cpullalt.v Page 1

// -
//

// SYNTHETZTIABLE CPUO1 CORE

//

// www.OpenCores.Org - December 2002

// This core adheres to the GNU public license

//

// File name : cpu0l.vhd

//

// Purpose : Implements a 6801 compatible CPU core
//

// Dependencies : ieee.Std_Logic_1164

// ieee.std_logic_unsigned
//

// Author : John E. Kent

//

// -
//

// Revision History:

//

// Date: Revision Author

// 22 Sep 2002 0.1 John Kent
//

// 30 Oct 2002 0.2 John Kent
// made NMI edge triggered

//

// 30 Oct 2002 0.3 John Kent

// more corrections to NMI

// added wai_wait_state to prevent stack overflow on wai.

//

// 1 Nov 2002 0.4 John Kent

// removed WAI states and integrated WAI with the interrupt service routine
// replace Data out (do) and Data in (di) register with a single Memory Data (md) reg.
// Added Multiply instruction states.

// run ALU and CC out of CPU module for timing measurements.

//

// 3 Nov 2002 0.5 John Kent

// Memory Data Register was not loaded on Store instructions

// SEV and CLV were not defined in the ALU

// Overflow Flag on NEG was incorrect

//

// 1l6th Feb 2003 0.6 John Kent

// Rearranged the execution cycle for dual operand instructions

// so that occurs during the following fetch cycle.

// This allows the reduction of one clock cycle from dual operand

// instruction. Note that this also necessitated re-arranging the

// program counter so that it is no longer incremented in the ALU.

// The effective address has also been re-arranged to include a

// separate added. The STD (store accd) now sets the condition codes.

//

// 28th Jun 2003 0.7 John Kent

// Added Hold and Halt signals. Hold is used to steal cycles from the

// CPU or add wait states. Halt puts the CPU in the inactive state

// and is only honoured in the fetch cycle. Both signals are active high.
//

// 24 Aug 2003 1.0 John Kent

// Converted 6800 core to 6801 by removing alu_cpx

// Also added 4 extra interrupt inputs

//

// 16 January 2004 1.1 John Kent (by Michael Hasenfratz)

// Failure to clear carry bit during CLR instructions

// Corrected CLR instructions to set alu_ctrl to alu_clr instead of alu_1d8.

//

module cpuO1l (
clk,

rst,

rw,

vma,
address,
data_in,
data_out,
hold,
halt,
irq,

nmi,

irg_ icf,
irqg_ocf,
irg_tof,
irqg_sci,
test_alu,
test_cc
)i

input clk;

input rst;

output rw;

output vma;

output [15:0] address;
input [7:0] data_in;
output [7:0] data_out;

cpullalt.v Page 2

input hold;

input halt;

input irgqg;

input nmi;

input irqg icf;

input irqg ocf;

input irg tof;

input irqg_sci;

output [15:0] test_alu;
output [7:0] test_cc;

wire clk;

wire rst;

reg rw;

reg vma;

reg [15:0] address;
wire [7:0] data_in;
reg [7:0] data_out;
wire hold;

wire halt;

wire irqg;
wire nmi ;
wire irg_ icf;
wire irqg_ocf;
wire irg_tof;
wire irg_sci;

reg [15:0] test_alu;
reg [7:0] test_cc;

parameter SBIT = 7
parameter XBIT = 6
parameter HBIT = 5
parameter IBIT = 4;
parameter NBIT = 3;
2
1
0

’
’

’

parameter 7ZBIT =
parameter VBIT =
parameter CBIT =
parameter [5:0]
reset_state = 0,
fetch_state = 1,
decode_state = 2,
extended_state =
indexed_state =
read8_state = 5,
readl6_state = 6,
immediatel6_state = 7,
write8_state = 8,
writel6_state = 9,
execute_state = 10,
halt_state = 11,
error_state = 12,
mul_state = 13,
mulea_state = 14,
muld_state = 15,
mulO_state = 16,
mull_state = 17,
mul2_state = 18,
mul3_state = 19,
mul4_state = 20,
mul5_state = 21,
mul6_state = 22,
mul7_state = 23,
jmp_state = 24,
jsr_state = 25,
jsrl_state = 26,
branch_state = 27,
bsr_state = 28,
bsrl_state = 29,
rts_hi_state = 30,
rts_lo_state = 31,
int_pcl_state = 32,

’
’

’

3,
4,

int_pch_state = 33,
int_ixl_state = 34,
int_ixh_state = 35,

int_cc_state = 36,

int_acca_state = 37,
int_accb_state = 38,
int_wai_state = 39,

int_mask_state = 40,
rti_state = 41,
rti_cc_state = 42,
rti_acca_state = 43,
rti_accb_state = 44,
rti_ixl_state = 45,
rti_ixh_state = 46,
rti_pcl_state 47,
rti_pch_state = 48,
pula_state = 49,
psha_state = 50,
pulb_state = 51,

cpullalt.v

pshb_state = 52,
pulx_lo_state =
pulx_hi_state =
pshx_lo_state =
pshx_hi_state =
vect_lo_state =
vect_hi_state =
parameter [2:0]
idle_ad = 0,
fetch_ad = 1,
read_ad = 2,
write_ad = 3,
push_ad = 4,
pull_ad = 5,
int_hi_ad = 6
int_lo_ad = 7;
parameter [3:0]
md_lo_dout = 0,
md_hi_dout = 1,
acca_dout = 2,
accb_dout = 3,
ix_lo_dout = 4,
ix_hi_dout = 5,
cc_dout = 6,
pc_lo_dout = 7,
pc_hi_dout = 8;
parameter [1:0]
reset_op = 0,
fetch_op = 1,
latch_op = 2;
parameter [2:0]
reset_acca = O,
load_acca = 1,
load_hi_acca =
pull_acca = 3,
latch_acca = 4;
parameter [1:0]
reset_accb = 0,
load_accb = 1,
pull_accb = 2,
latch_accb = 3;
parameter [1:0]
reset_cc = 0,
load_cc = 1,
pull_cc = 2,
latch_cc = 3;
parameter [2:0]
reset_ix = 0,
load_ix = 1,
pull_lo_ix =
pull_hi_ix
latch_ix =
parameter [1:
reset_sp =
latch_sp =
load_sp = 2
parameter [2:
reset_pc =
latch_pc =
load_ea_pc 2,
add_ea_pc = 3,
pull_lo_pc = 4,
pull_hi_pc = 5,
inc_pc = 6;
parameter [2:0]
reset_md = 0,
latch_.md = 1,
load_md = 2,

fetch_first_md =

fetch_next_md =
shiftl_md = 5;
parameter [2:0]

reset_ea = 0,
latch_ea = 1,
add_ix_ea = 2,

load_accb_ea = 3
inc_ea = 4,
fetch_first_ea =
fetch_next_ea =
parameter [3:0]
reset_iv = 0,
latch_iv 1,
swi_iv =
nmi_iv =
irg iv =
icf_iv
ocf_iv
tof_iv
sci_iv = 8;
parameter [1:0]
reset_nmi = 0,

2
3
4
5
6
7
8
1

53,
54,
55,
56,
57,
58;

2,

3,
4,

’

5,
6;

Page 3

cpullalt.v

set_nmi = 1,
latch_nmi =
parameter [2:0

acca_left
accb_left =
accd_left
md_left =
ix_left =
sp_left =
parameter [1:
md_right = 0,
zero_right 1,
plus_one_right = 2,
accb_right = 3;
parameter [5:0]
alu_add8 = 0O,
alu_sub8 = 1,
alu_addle = 2,
alu_suble = 3,
alu_adc = 4,
alu_sbc = 5,
alu_and = 6,
7,
8/

’

2
]
0
1
2

(GOSN |
~ S~ 0~

I © O~ ~ ~

]

alu_ora =
alu_eor =
alu_tst = 9,
alu_inc = 10,
alu_dec = 11,
alu_clr = 12,
alu_neg = 13,
alu_com = 14,
alu_inx = 15,
alu_dex = 16,
alu_lsrle = 17,
alu_1lslle = 18,

alu_ror8 = 19,
alu_rol8 = 20,
alu_asr8 = 21,
alu_asl8 = 22,
alu_1lsr8 = 23,

alu_sei = 24,
alu_cli = 25,
alu_sec = 26,
alu_clc = 27,
alu_sev = 28,
alu_clv = 29,
alu_tpa = 30,
alu_tap = 31,
alu_1d8 = 32,
alu_st8 = 33,
alu_1ldle = 34,
alu_stlée = 35,

reg |] acca;
reg [7:0] accb;
reg [7:0] cc;

reg [7:0] cc_out;
reg [15:0] xreg;
reg [15:0] sp;
reg [15:0] ea;
reg [15:0] pc;
reg [15:0] md;
reg [15:0] left;
reg [15:0] right;
reg [15:0] out_alu;
reg [2:0] iv;

reg nmi_req;
reg nmi_ack;

reg [5:0] state;

reg [5:0] next_state;
reg [2:0] pc_ctrl;
reg [2:0] ea_ctrl;
reg [1:0] op_ctrl;
reg [2:0] md_ctrl;
reg [2:0] acca_ctrl;
reg [1:0] accb_ctrl;
reg [2:0] ix_ctrl;
reg [1:0] cc_ctrl;
reg [1:0] sp_ctrl;
reg [3:0] iv_ctrl;
reg [2:0] left_ctrl;
reg [1:0] right_ctrl;
reg [5:0] alu_ctrl;
reg [2:0] addr_ctrl;
reg [3:0] dout_ctrl;
reg [1:0] nmi_ctrl;

//

// Address bus multiplexer

Page 4

cpullalt.v

/*

//

case (4_bit_expression)

4'b0000

begin
statementl;

end

4'p1010:

begin
statement2;

end

default

begin
statement3;

end

endcase */

always @ (negedge clk) //(clk or addr_ctrl or pc or ea or sp or 1iv)

begin

case (addr_ctrl)

idle_ad : begin
address <= 16'b1111111111111111;
vma <= 1'b0;
rw <= 1'bl;

end

fetch_ad : begin
address <= pc;
vma <= 1'bl;
rw <= 1'bl;

end

read_ad : begin
address <= ea;
vma <= 1'bl;
rw <= 1'bl;

end

write_ad : begin
address <= ea;
vma <= 1'bl;
rw <= 1'b0;

end

push_ad : begin
address <= sp;
vma <= 1'bl;
rw <= 1'b0;

end

pull_ad : begin
address <= sp;
vma <= 1'bl;
rw <= 1'bl;

end

int_hi_ad : begin
address <= {12'b 111111111111,1iv,1'b0};
vma <= 1'bl;
rw <= 1'bl;

end

int_lo_ad : begin
address <= {12'b 111111111111,1iv,1'bl};
vma <= 1'bl;
rw <= 1'bl;

end

default : begin
address <= 16'b1111111111111111;
vma <= 1'b0;
rw <= 1'bl;

end

endcase

end

// endmodule

//

// Data Bus output

//

always @ (negedge clk) //(clk or dout_ctrl or md or acca or accb or xreg or pc or cc)

begin
case (dout_ctrl)
md_hi_dout : begin
// alu output
data_out <= md[15:8] ;
end
md_lo_dout : begin
data_out <= md[7:0] ;
end
acca_dout : begin
// accumulator a
data_out <= acca;
end

Page 5

cpullalt.v

accb_dout : begin
// accumulator b
data_out <= accb;
end
ix_lo_dout : begin
// index reg
data_out <= xreg[7:0] ;
end
ix_hi_dout : begin
// index reg
data_out <= xreg[15:8] ;
end
cc_dout : begin
// condition codes
data_out <= cc;
end
pc_lo_dout : begin
// low order pc
data_out <= pc[7:0] ;
end
pc_hi_dout : begin
// high order pc
data_out <= pc[15:8] ;
end
default : begin
data_out <= 8"'b 00000000;
end
endcase
end

// endmodule

//

always @ (negedge clk) //(clk or pc_ctrl or pc or

begin
reg [15:0] tempof;
reg [15:0] temppc;

case (pc_ctrl)
add_ea_pc : begin
if(eal[7] == 1'b0) begin
tempof = {8'b 00000000,eal”
end
else begin
tempof = {8'b 11111111,eal”
end
end
inc_pc : begin
tempof = 16'b0000000000000001
end
default : begin
tempof = 16'b0000000000000000
end
endcase
case (pc_ctrl)
reset_pc : begin
temppc = 16'"p1111111111111110
end
load_ea_pc : begin
temppc = ea;

end

pull_lo_pc : begin
temppc[7:0] = data_in;
temppc[15:8] = pc[l5:8] ;

end

pull_hi_pc : begin
temppc [7:0] = pc[7:0] ;
temppc[15:8] = data_in;

end

default : begin
temppc = pc;

end
endcase
end
// if clk'event and clk = '0'
// if hold = '1' then
// pc <= pc;
// else
// pc <= temppc + tempof;
// end if;
// end if;
always @ (negedge clk)
begin
if (hold == 1'bl) pc <= pc;

else pc <= temppc + tempof;
end
// endmodule

:0]

:0]

’

’

’

then

bi

bi

out_alu or

data_in or ea or hold)

Page 6

cpullalt.v

always @ (negedge clk) //(clk or ea_ctrl or ea or out_alu or data_in or
begin
reg [15:0] tempind;
reg [15:0] tempea;

case (ea_ctrl)
add_ix_ea : begin
tempind = {8'b 00000000,eal7:0] };
end
inc_ea : begin
tempind = 16'b0000000000000001;
end
default : begin
tempind = 16'b0000000000000000;
end
endcase
case (ea_ctrl)
reset_ea : begin
tempea = 16'b0000000000000000;

end
load_acchb_ea : begin

tempea = {8'b 00000000,accb[7:0] };
end

add_ix_ea : begin
tempea = xreg;

end

fetch_first_ea : begin
tempea[7:0] = data_in;
tempea[15:8] = 8'b 00000000;

end

fetch_next_ea : begin
tempea[7:0] = data_in;
tempea[15:8] = eal7:0] ;

end

default : begin
tempea = ea;

end
endcase
end
// if clk'event and clk = '0' then
// if hold = '1' then
// ea <= ea;
// else
// ea <= tempea + tempind;
// end if;
// end if;
always (@ (negedge clk)
begin
if (hold == 1'bl) ea <= ea;
else ea <= tempea + tempind;
end
/)
//
// Accumulator A
//
/)

accb or xreg or hold)

Page 7

always @ (negedge clk) //(negedge clk or negedge acca_ctrl or negedge out_alu or negedge acca or negedge data_

in or negedge hold)

begin

if (hold == 1'bl) begin
acca <= acca;

end

else begin
case (acca_ctrl)
reset_acca : begin
acca <= 8'b 00000000;
end
load_acca : begin
acca <= out_alul[7:0] ;
end
load_hi_acca : begin
acca <= out_alul[l5:8] ;
end
pull_acca : begin
acca <= data_in;

end
default : begin
// when latch_acca =>
acca <= acca;
end
endcase
end

end
// endmodule

cpullalt.v

always (@ (negedge clk)
in or negedge hold)
begin
if (hold == 1'bl)
accb <= accb;
end
else begin
case (accb_ctrl)
reset_acchb begin

// (negedge clk or negedge

begin

8'b 00000000;

accb <=

end

load_accb begin
accb <= out_alul[7:0] ;

end

pull_accb begin
accb <= data_in;

end

default begin
// when latch_accb =>
accb <= accb;

end

endcase

end
end

// endmodule

//

/)
always @ (negedge clk) //(negedge clk or negedge
or negedge hold)
begin
if (hold == 1'bl) begin
Xreg <= xreg;
end
else begin
case (ix_ctrl)
reset_ix : begin
xreg <= 16'b0000000000000000;
end
load_ix begin
xreg <= out_alu[l5:0] ;
end
pull_hi_ix begin
xreg[15:8] <= data_in;
end
pull_lo_ix begin
xreg[7:0] <= data_in;
end
default begin
// when latch_ix =>
Xreg <= xreg;
end
endcase
end

end
// endmodule

//

always @

begin

if (hol
sp <= sp;

end

else begin
case (sp_ctrl)
reset_sp begin

(negedge clk)

1'bl)

// (negedge clk or negedge

begin

sp <= 16'b0000000000000000;

end
load_sp
sp <=
end
default
//
sp <= sp;
end
endcase
end
end

begin

begin

out_alu[l5:

01 ;

when latch_sp =>

accb_ctrl

ix_ctrl or

sp_ctrl or

Page 8

or negedge out_alu or negedge accb or negedge data_

negedge out_alu or negedge xreg or negedge data_in

negedge out_alu or negedge hold)

cpullalt.v

// endmodule

//

always @ (negedge clk) //(negedge clk or negedge md_ctrl

r negedge hold)
begin
if (hold == 1'bl) begin

md <= md;

end
else begin

case (md_ctrl)

reset_md : begin
md <= 16'b0000000000000000;

end

load_md : begin
md <= out_alul[l5:0] ;

end

fetch_first_md : begin
md[15:8] <= 8'b 00000000;
md[7:0] <= data_in[7:0];

end

fetch_next_md : begin
md[15:8] <= md[7:0] ;
md[7:0] <= data_in[7:0];

end

shiftl_md : begin

md[15:1] <= md[14:0] ;
md [0] <= 1'b0;
end

default : begin
// when latch_md =>
md <= md;

end

endcase

end

end

// endmodule

//
//

always @ (negedge clk) //(negedge clk or negedge cc_ctrl

negedge hold)
begin
if (hold == 1'bl) begin

cc <= cc;

end
else begin

case(cc_ctrl)
reset_cc : begin
cc <= 8'b 11000000;
end
load_cc : begin
cc <= cc_out;
end
pull_cc : begin
cc <= data_in;
end
default : begin
// when latch_cc =>
cc <= cc;
end
endcase

end

end

// endmodule

Page 9

or negedge out_alu or negedge data_in or negedge md o

or negedge cc_out or negedge cc or negedge data_in or

always @ (negedge clk) //(negedge clk or negedge iv_ctrl or negedge hold)

[e
//
// interrupt vector
//
[)
begin
if (hold == 1'bl) begin

iv <= iv;

end
else begin

case (iv_ctrl)

reset_iv : begin
iv <= 3'b 111;

end

nmi_iv : begin
iv <= 3'b 110;

end

cpullalt.v

swi_iv begin
iv <= 3'b 101;
end
irg_iv begin
iv <= 3'b 100;
end
icf_iv begin
iv <= 3'b 011;
end
ocf_iv begin
iv <= 3'b 010;
end
tof_iv begin
iv <= 3'b 001;
end
sci_iv begin
iv <= 3'b 000;
end
default begin
iv <= iv;
end
endcase
end
end
// endmodule
B
//
// op code fetch
//
[/
always @ (negedge clk) //(negedge clk or negedge data_in or
)
begin
if (hold == 1'bl) begin
op_code <= op_code;
end
else begin
case (op_ctrl)
reset_op begin
op_code <= 8'b 00000001;
// nop
end
fetch_op begin
op_code <= data_in;
end
default begin
// when latch_op =>
op_code <= op_code;
end
endcase
end
end
// endmodule
[/
//
// Left Mux
//
[/
always @ (negedge clk) //(left_ctrl or acca or accb or xreg
begin
case (left_ctrl)
acca_left begin
left[15:8] <= 8'b 00000000;
left[7:0] <= acca;
end
accb_left begin
left[15:8] <= 8'b 00000000;
left[7:0] <= accb;
end
accd_left begin
left[15:8] <= acca;
left[7:0] <= accb;
end
ix_left begin
left <= xreg;
end
sp_left begin
left <= sp;
end
default begin
// when md_left =>
left <= md;
end
endcase
end
// endmodule

Page 10

negedge op_ctrl or negedge op_code or negedge hold

or sp or pc or ea or md)

cpullalt.v Page 11

//

// Right Mux

//

/)

always @ (negedge clk) //(right_ctrl or data_in or md or accb or ea)
begin

case (right_ctrl)
zero_right : begin

right <= 16'b0000000000000000;
end
plus_one_right : begin

right <= 16'b0000000000000001;
end
accb_right : begin

right <= {8'b 00000000, accb};

end
default : begin
// when md_right =>
right <= md;
end
endcase
end

// endmodule

[/
//
// Arithmetic Logic Unit
//
[/
always @ (negedge clk) //(alu_ctrl or cc or left or right or out_alu or cc_out)
begin
reg valid_lo;
//boolean;
reg valid_hi;
//boolean;

reg carry_in;
reg [7:0] daa_reg;

case (alu_ctrl)
alu_adc, alu_sbc,alu_rol8,alu_ror8 : begin
carry_in = cc[CBIT] ;
end
default : begin
carry_in = 1'b0;
end
endcase
// valid_lo := left (3 downto 0) <= 9;
if((left[3:0] <= 9)) begin
valid_lo = 1'bl;
end
else begin
valid_lo = 1'b0;
end
// wvalid_hi := left (7 downto 4) <= 9;
if((left[7:4] <= 9)) begin
valid_hi = 1'bl;
end
else begin
valid_hi = 1'b0;

end
if((cc[CBIT] == 1'b0)) begin
if ((cc[HBIT] == 1'bl)) begin
if(valid_hi == 1'bl) begin
daa_reg = 8'b 00000110;
end

else begin
daa_reg = 8'b 01100110;

end
end
else begin
if(valid_lo == 1'bl) begin
if (valid_hi == 1'bl) begin
daa_reg = 8'b 00000000;
end

else begin
daa_reg = 8'b 01100000;
end
end
else begin
if((left[7:4] <= 8)) begin
daa_reg = 8'b 00000110;
end
else begin
daa_reg = 8'b 01100110;
end
end
end
end
else begin
if ((cc[HBIT] == 1'bl)) begin
daa_reg = 8'b 01100110;

cpullalt.v

end
else begin

if(valid_lo == 1'bl)

begin

daa_reg = 8'b 01100000;
end
else begin
daa_reg = 8'b 01100110;
end
end

end
case (alu_ctrl)

alu_add8,alu_inc,alu_addl6,alu_inx,alu_adc

out_alu <= left + right +
end

alu_sub8,alu_dec,alu_subl6,alu_dex,alu_sbc

out_alu <= left - right -

: begin
({15'b 000000000000000, carry_in});

: begin
({15'b 000000000000000, carry_in});

end
alu_and : begin
out_alu <= left & right;
// and/bit
end
alu_ora : begin
out_alu <= left | right;
// or
end
alu_eor : begin
out_alu <= left ~ right;
// eor/xor
end
alu_1sl16,alu_asl8,alu_rol8 : begin
out_alu <= {left[14:0] ,carry_in};
// rol8/asl8/1sllé6
end
alu_lsrl6,alu_1lsr8 : begin

out_alu <= {carry_in,left[15:1] };

,left[7:1] };

// lsr

end

alu_ror8 : begin
out_alu <= {8'b 00000000, carry_in,left[7:1] };
// ror

end

alu_asr8 : begin
out_alu <= {8'b 00000000,left[7]
// asr

end

alu_neg : begin

out_alu <= right - left;
// neg (right=0)

end

alu_com : begin
out_alu <= ~left;

end

alu_clr,alu_1d8,alu_1dlo
out_alu <= right;

: begin

({8'b 00000000, daa_reg});

// clr, 1d
end
alu_st8,alu_stl6é : begin
out_alu <= left;
end
alu_daa : begin
out_alu <= left +
end
alu_tpa : begin
out_alu <= {8'b 00000000, cc};
end
default : begin
out_alu <= left;
// nop
end
endcase
//
// carry bit
//

case (alu_ctrl)

~out_alull5])) |

))

alu_add8,alu_adc : begin
cc_out [CBIT] <= ((left[7] & right[7])) | ((left[7] & ~out_alul7]
end
alu_sub8,alu_sbc : begin
cc_out [CBIT] <= ((((~left[7])) & right[7])) | ((((~left[7])
[71)
end
alu_addl6 : begin
cc_out [CBIT] <= ((left[15] & right[15]1)) | ((left[15] &
1))
end
alu_subl6 : begin
cc_out [CBIT] <= ((((~left[15])) & right[15])) | ((((~left[15]
t_alull5]));
end

alu_ror8,alu_lsrl6,alu_lsr8,alu_asrs8

cc_out [CBIT] <= left[0]

’

: begin

)) |

& out_alull5]

((right[7]

((right[7]

))

&

((right[15] &

Page 12

~out_alul7]

((right[15]

)) i

&

& out_alu

~out_alull5

ou

cpullalt.v

end
alu_rol8,alu_asl8
cc_out [CBIT] <=1
end
alu_1lsllé6 begin
cc_out [CBIT] <=1
end
alu_com begin
cc_out [CBIT]
end
alu_neg,alu_clr be
cc_out [CBIT] <= o
lull] | out_alul0] ;
end
alu_daa begin
if ((daa_reg[7:4]
cc_out [CBIT]
end
else begin
cc_out [CBIT]
end
end
alu_sec begin
cc_out [CBIT]
end
alu_clc begin
cc_out [CBIT]
end
alu_tap begin
cc_out [CBIT]
end
default begin
cc_out [CBIT]
end
endcase
//
// Zero flag
//
case (alu_ctrl)

<=1

<=

<=

<=1

<= C

begin
eft[7] ;

eft[15] ;
'bl;

gin
ut_alul7] |

= 4'p 0110))
1'bl;

1'b0;

eft [CBIT] ;

c[CBIT] ;

begin

out_alul6]

| out_alul5] |

out_alul4]

| out_alul3] |

out_alul2] |

Page 13

out_a

alu_add8,alu_sub8,alu_adc,alu_sbc,alu_and,alu_ora,alu_eor,alu_inc,alu_dec,alu_neg,alu_com,alu_clr,alu_rol8,a

lu_ror8,alu_asr8,alu_asl8,alu_lsr8,alu_1d8,alu_st8

cc_out [ZBIT] <=
ut_alull] | out_alul0]
end

alu_addl6,alu_subl6,alu_1sl116,alu_lsrl6,alu_inx,alu_dex,alu_1d16,alu_stl6
out_alull4] |

cc_out [ZBIT] <=
] | out_alul9] | out_a
] | out_alull] | out_a
end
alu_tap begin
cc_out [ZBIT] <=1
end
default begin
cc_out [ZBIT] <= c
end
endcase
//
// negative flag
//

case (alu_ctrl)

~((out_alul7] |
)) i

~((out_alul[l5] |
lul8] | out_alul7]
1ul0]));

eft [ZBIT] ;

c[ZBIT] ;

out_alul6] |

begin
out_alul5] |

out_alull3] |
out_alul[6] | out_alul5]

out_alul4] |

begin

out_alull2]

out_alul4]

out_alu(3] |

out_alulll]
| out_alul3]

out_alul2] | o

out_alull0
out_alul?2

alu_add8, alu_sub8,alu_adc,alu_sbc,alu_and,alu_ora,alu_eor,alu_rol8,alu_ror8,alu_asr8,alu_asl8,alu_lsr8,alu_i

nc,alu_dec,alu_neg,alu_com,alu_clr,alu_1d8,alu_st8

cc_out [NBIT]
end

<= 0

alu_addl6,alu_subl6,alu_1sll6,alu_lsrl6,alu_1dl6,alu_stlo

cc_out [NBIT]
end
alu_tap begin
cc_out [NBIT]
end
default begin
cc_out [NBIT]
end
endcase
//
// Interrupt mask fl
//
case (alu_ctrl)
alu_sei begin
cc_out [IBIT]

<= 0

<=1

<= C

<=1

// set interrupt m

end

alu_cli : begin
cc_out [IBIT] <=1
// clear interrupt

end

alu_tap begin
cc_out [IBIT]

end

default begin

cc_out [IBIT] <= cC

ut_alul7] ;

ut_alul[l5] ;

eft [NBIT] ;

c[NBIT] ;

ag

'b0;
mask

<= left [IBIT] ;

c[IBIT] ;

begin

begin

cpullalt.v Page 14

// interrupt mask
end
endcase
//
// Half Carry flag
//
case (alu_ctrl)
alu_add8,alu_adc : begin
cc_out [HBIT] <= ((left[3] & right[3])) | ((right[3] & ~out_alul3])) | ((left[3] & ~out_alul3]));
end
alu_tap : begin
cc_out [HBIT] <= left [HBIT] ;
end
default : begin
cc_out [HBIT] <= cc[HBIT] ;
end
endcase
//
// Overflow flag
//
case (alu_ctrl)
alu_add8,alu_adc : begin

cc_out [VBIT] <= ((left[7] & right[7] & ((~out_alul7])))) | ((((~left[7])) & ((~right[7])) & out_a
Lul7]));
end
alu_sub8,alu_sbc : begin
cc_out [VBIT] <= ((left[7] & ((~right[7])) & ((~out_alul7])))) | ((((~left[7])) & right[7] & out_a
Lul7]));
end
alu_addl6 : begin
cc_out [VBIT] <= ((left[15] & right[15] & ((~out_alull5])))) | ((((~left[15])) & ((~right[15])) &
out_alull5]));
end
alu_subl6 : begin
cc_out [VBIT] <= ((left[15] & ((~right[15])) & ((~out_alull5])))) | ((((~left[15])) & right[1l5] &
out_alull5]));
end
alu_inc : begin
cc_out [VBIT] <= (((~left[7])) & left[6] & left[5] & left[4] & left[3] & left[2] & left[l] & left]
01)
end
alu_dec,alu_neg : begin
cc_out [VBIT] <= (left[7] & ((~left[6])) & ((~left[5])) & ((~left[4])) & ((~left[3])) & ((~left]
21 1)) & ((~left[l])) & ((~left([0])));
end

alu_asr8 : begin
cc_out [VBIT] <= left[0] ~left[7]
end
alu_1lsr8,alu_lsrl6 : begin
cc_out [VBIT] <= left[0] ;
end
alu_ror8 : begin
cc_out [VBIT] <= left[0] ~ cc[CBIT] ;
end
alu_1lsll6 : begin
cc_out [VBIT] <= left[15] ~ left[14] ;
end
alu_rol8,alu_asl8 : begin
cc_out [VBIT] <= left[7] ~ left[6]
end
alu_tap : begin
cc_out [VBIT] <= left [VBIT] ;
end
alu_and, alu_ora,alu_eor,alu_com,alu_st8,alu_stl6,alu_1d8,alu_1dl6,alu_clv : begin
cc_out [VBIT] <= 1'b0;
end
alu_sev : begin
cc_out [VBIT] <= 1'bl;
end
default : begin
cc_out [VBIT] <= cc[VBIT] ;
end
endcase
case (alu_ctrl)
alu_tap : begin
cc_out [XBIT] <= Ccc[XBIT] & left [XBIT] ;
cc_out [SBIT] <= left[SBIT] ;
end
default : begin
cc_out [XBIT] <= Ccc[XBIT] & left [XBIT] ;
cc_out [SBIT] <= cc[SBIT] ;
end
endcase
test_alu <= out_alu;
test_cc <= cc_out;
end
// endmodule

// Detect Edge of NMI interrupt

cpullalt.v

rst or negedge nmi or negedge nmi_ack)

//
[/
always (@ (negedge clk) //(negedge clk or negedge
begin
if (hold == 1'bl) begin
nmi_reqg <= nmi_req;
end
else begin
if(rst == 1'bl) begin
nmi_reqg <= 1'b0;
end
else begin
if((nmi == 1'bl) && (nmi_ack == 1'b0)) begin
nmi_reqg <= 1'bl;
end
else begin
if((nmi == 1'b0) && (nmi_ack == 1'bl)) begin
nmi_reqg <= 1'b0;
end
else begin
nmi_reqg <= nmi_req;
end
end
end
end
end

// endmodule

[/
//
// Nmi mux
//
[/
always @ (negedge clk) //(negedge clk or negedge
begin
if (hold == 1'bl) begin
nmi_ack <= nmi_ack;
end

else begin
case (nmi_ctrl)
set_nmi : begin
nmi_ack <= 1'bl;
end
reset_nmi : begin
nmi_ack <= 1'b0;
end
default : begin
// when latch_nmi =>
nmi_ack <= nmi_ack;
end
endcase
end
end
// endmodule

nmi_ctrl or negedge nmi_ack or negedge hold)

Page 15

always (@ (negedge clk) //(state or op_code or cc or ea or irqg or irqg_icf or irg ocf or irg tof or irg_sci or n

mi_req or nmi_ack or hold or halt)

begin

case (state)

reset_state : begin
// released from reset
// reset the registers
op_ctrl <= reset_op;
acca_ctrl <= reset_acca;
accb_ctrl <= reset_accb;
ix_ctrl <= reset_ix;
sp_ctrl <= reset_sp;
pc_ctrl <= reset_pc;
ea_ctrl <= reset_ea;
md_ctrl <= reset_md;
iv_ctrl <= reset_iv;
nmi_ctrl <= reset_nmi;
// idle the ALU
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= reset_cc;
// idle the bus
dout_ctrl <= md_lo_dout;
addr_ctrl <= idle_ad;
next_state <= vect_hi_state;
//
// Jump via interrupt vector
// iv holds interrupt type
// fetch PC hi from vector location

//

cpullalt.v

end

vect_hi_state : begin
// default the registers
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;

ix_c
sp_c
md_c
ea_c
iv_c

// i

trl <=
trl <=
trl <=
trl <=
trl <=
dle th

latch_ix;
latch_sp;
latch_md;
latch_ea;
latch_iv;
e ALU

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;

cc_c

// fetch pc low interrupt vector

trl <=

latch_cc;

pc_ctrl <= pull_hi_pc;
addr_ctrl <= int_hi_ad;
dout_ctrl <= pc_hi_dout;

next

//

// jump via interrupt vector

_state

<= vect_lo_state;

// iv holds vector type

// fetch PC lo from vector location

//

end

vect_lo_state : begin
// default the registers
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;

ix_c
sp_c
md_c
ea_c
iv_c
// 1
left

trl <=
trl <=
trl <=
trl <=
trl <=
dle th
_ctrl

latch_ix;
latch_sp;
latch_md;
latch_ea;
latch_iv;

e ALU

<= acca_left;

right_ctrl <= zero_right;
alu_ctrl <= alu_nop;

Ccc_cC

// fetch the vector low byte

trl <=

latch_cc;

pc_ctrl <= pull_lo_pc;
addr_ctrl <= int_lo_ad;
dout_ctrl <= pc_lo_dout;
next_state <= fetch_state;

//

// Here to fetch an instruction

// PC points to opcode

// Should service interrupt requests at this point

// either from the timer

// or from the external input.

//

// branch conditional
// acca single op

// accb single op

// indexed single op
// extended single op
// idle ALU

end

fetch_state
case (op_code[7:4])

4'b 0000,4'b 0001,4'b 0010,4'b 0011,4'b 0100,4'b 0101,4'b 0110,4'b 0111

begin

left_ctrl <= acca_left;

right_ctrl <= zero_right;

alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;

ix
SPp.
//
//
//
//
end

4'b 1000,4'b 1001,4'b 1010,4'b 1011

_ctrl
_ctrl
acca
acca
acca
acca

<= latch_ix;
<= latch_sp;
immediate
direct
indexed
extended

case (op_code[3:0])

40

b 0000 begin
// suba
left_ctrl <= acca_left;

right_ctrl <= md_right;

alu_ctrl <= alu_sub8g;

cc_ctr

acca_ctrl <=
accb_ctrl

ix_ctr
sp_ctr

1 <= load_cc;

1 <= latch_ix;
1 <= latch_sp;

load_acca;
<= latch_accb;

begin

Page 16

cpullalt.v Page 17

end
4'b 0001 : begin
// cmpa

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sub$8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 0010 : begin
// sbca

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sbc;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0011 : begin
// subd

left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 0100 : begin
// anda

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_and;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0101 : begin
// bita

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_and;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 0110 : begin
// ldaa

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_1d8;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0111 : begin
// staa

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 1000 : begin
// eora

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_eor;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
end
4'b 1001 : begin
// adca

cpullalt.v

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_adc;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

40

b 1010 : begin

// oraa

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_ora;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

4

b 1011 : begin

// adda

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_add8;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

40

b 1100 : begin

// cpx

left_ctrl <= ix_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

4

b 1101 : begin

// bsr / jsr

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

40

b 1110 : begin

// 1lds

left_ctrl <= sp_left;
right_ctrl <= md_right;
alu_ctrl <= alu_1dl6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= load_sp;

end

4

b 1111 : begin

// sts

left_ctrl <= sp_left;
right_ctrl <= md_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
default : begin

left_ctrl <= acca_left;
right_ctrl <= md_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
endcase

//
//
//
//

end

accb immediate
accb direct
accb indexed
accb extended

Page 18

cpullalt.v Page 19

4'pb 1100,4'b 1101,4'b 1110,4'b 1111 : begin

case (op_code[3:0])

4'b 0000 : begin
// subb
left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sub8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0001 : begin
// cmpb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sub8g;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 0010 : begin
// sbcb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_sbc;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0011 : begin
// addd

left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addl6;
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 0100 : begin
// andb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_and;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0101 : begin
// bitb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_and;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0110 : begin
// ldab

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_1d8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 0111 : begin
// stab

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_st8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

4'b 1000 : begin

cpullalt.v Page 20

// eorb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_eor;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'p 1001 : begin
// adcb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_adc;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 1010 : begin
// orab

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_ora;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 1011 : begin
// addb

left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_add8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 1100 : begin
// 1dd

left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_1dl6;
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'pb 1101 : begin
// std

left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end
4'b 1110 : begin
// 1ldx

left_ctrl <= ix_left;
right_ctrl <= md_right;
alu_ctrl <= alu_1d1l6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= load_ix;
sp_ctrl <= latch_sp;

end
4'pb 1111 : begin
// stx

left_ctrl <= ix_left;
right_ctrl <= md_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

end

default : begin
left_ctrl <= accb_left;
right_ctrl <= md_right;
alu_ctrl <= alu_nop;

cpullalt.v

cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
end
endcase
end
default begin
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
end
endcase
md_ctrl <= latch_md;
// fetch the op code
op_ctrl <= fetch_op;
ea_ctrl <= reset_ea;
addr_ctrl <= fetch_ad;

dout_ctrl <= md_lo_dout;
iv_ctrl <= latch_iv;
if (halt == 1'bl) begin

pc_ctrl <= latch_pc;
nmi_ctrl <= latch_nmi;
next_state <= halt_state;
// service non maskable interrupts
end
else if((nmi_req == 1'bl)
pc_ctrl <= latch_pc;
nmi_ctrl <= set_nmi;
next_state <= int_pcl_state;
// service maskable interrupts

&& (nmi_ack

1'b0))

begin

end
else begin
//
// nmi request is not cleared until nmi input goes low
//
if((nmi_req == 1'b0) && (nmi_ack == 1'bl)) begin
nmi_ctrl <= reset_nmi;
end
else begin
nmi_ctrl <= latch_nmi;
end
//
// IRQ is level sensitive
//
if(((irg == 1'bl) || (irg_icf == 1'bl) || (irg_ocf == 1'bl) || (irg_tof ==
& (cc[IBIT] == 1'b0)) begin

pc_ctrl <= latch_pc;
next_state <= int_pcl_state;
end
else begin

// Advance the PC to fetch next instruction byte

pc_ctrl <= inc_pc;
next_state <= decode_state;
end
end
//

// Here to decode instruction
// and fetch next byte of intruction
// whether it be necessary or not
//
end

decode_state begin

// fetch first byte of address or immediate data

ea_ctrl <= fetch_first_ea;
addr_ctrl <= fetch_ad;
dout_ctrl <= md_lo_dout;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
iv_ctrl <= latch_iv;

case (op_code[7:4])

4'b 0000 begin
md_ctrl <= fetch_first_md;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
case (op_code[3:0])
4'b 0001 begin
// nop

left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

Page 21

cpullalt.v Page 22

end
4'b 0100 : begin
// lsrd

left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_lsrl6;
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;

end
4'b 0101 : begin
// 1lsld

left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_1sll6;
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
ix_ctrl <= latch_ix;

end
4'b 0110 : begin
// tap

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_tap;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'b 0111 : begin
// tpa

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_tpa;
cc_ctrl <= latch_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'b 1000 : begin
// inx

left_ctrl <= ix_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_inx;

cc_ctrl <= load_cc;

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= load_ix;

end
4'b 1001 : begin
// dex

left_ctrl <= ix_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_dex;

cc_ctrl <= load_cc;

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= load_ix;

end
4'b 1010 : begin
// clv

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_clv;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'b 1011 : begin
// sev

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_sev;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'b 1100 : begin
// clc

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_clc;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
end

cpullalt.v Page 23

4'b 1101 : begin
// sec
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_sec;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'p 1110 : begin
// cli

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_cli;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end
4'p 1111 : begin
// sei

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_sei;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end

default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

end

endcase

next_state <= fetch_state;

// acca / accb inherent instructions

end
4'b 0001 : begin

md_ctrl <= fetch_first_md;

ix_ctrl <= latch_ix;

sp_ctrl <= latch_sp;

pc_ctrl <= latch_pc;

left_ctrl <= acca_left;

right_ctrl <= accb_right;

case (op_code[3:0])

4'b 0000 : begin
// sba
alu_ctrl <= alu_sub8g;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;

end
4'pb 0001 : begin
// cba

alu_ctrl <= alu_sub8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;

end
4'b 0110 : begin
// tab

alu_ctrl <= alu_st8;
cc_ctrl <= load_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= load_accb;

end
4'pb 0111 : begin
// tba

alu_ctrl <= alu_1d8;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;

end
4'b 1001 : begin
// daa

alu_ctrl <= alu_daa;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;
accb_ctrl <= latch_accb;

end
4'pb 1011 : begin
// aba

alu_ctrl <= alu_add8;
cc_ctrl <= load_cc;
acca_ctrl <= load_acca;

cpullalt.v

accb_ctrl <= latch_accb;
end
default : begin
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
endcase
next_state <= fetch_state;

end
4'b 0010 : begin

// branch conditional
md_ctrl <= fetch_ first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;

// increment the pc
pc_ctrl <= inc_pc;

case (op_code[3:0])

4'b 0000 : begin

// bra

next_state <= branch_state;
end
4'b 0001 : begin

// brn

next_state <= fetch_state;
end
4'b 0010 : begin

// bhi

if (((cc[CBIT] | ¢cc[zZBIT])) == 1'b0O)

next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'b 0011 : begin
// bls
if(((cc[CBIT] | cc[ZBIT])) == 1'bl)
next_state <= branch_state;
end

else begin
next_state <= fetch_state;
end
end
4'b 0100 : begin
// bcc/bhs
if (cc[CBIT] == 1'b0) begin
next_state <= branch_state;
end
else begin
next_state <= fetch_state;
end
end
4'b 0101 : begin
// bcs/blo
if(cc[CBIT] == 1'bl) begin
next_state <= branch_state;
end
else begin
next_state <= fetch_state;

end
end
4'b 0110 : begin
// bne
if (cc[ZBIT] == 1'b0) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 0111 : begin
// beq
if (cc[ZBIT] == 1'bl) begin

next_state <= branch_state;
end
else begin

next_state <= fetch_state;

end
end
4'b 1000 : begin
// bvc
if (cc[VBIT] == 1'b0) begin

next_state <= branch_state;

begin

begin

Page 24

cpullalt.v Page 25

end
else begin
next_state <= fetch_state;

end
end
4'pb 1001 : begin
// bvs
if (cc[VBIT] == 1'bl) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1010 : begin
// bpl
if(cc[NBIT] == 1'b0) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1011 : begin
// bmi
if (cc[NBIT] == 1'bl) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1100 : begin
// bge
if (((cc[NBIT] ~ cc[VBIT])) == 1'b0) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1101 : begin
// blt
if (((cc[NBIT] ~ cc[VBIT])) == 1'bl) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1110 : begin
// bgt
if(((ccl[ZBIT] | ((cc[NBIT] ~ cc[VBIT])))) == 1'b0) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;

end
end
4'pb 1111 : begin
// ble
if(((ccl[zZBIT] | ((cc[NBIT] ~ cc[VBIT])))) == 1'bl) begin
next_state <= branch_state;
end

else begin
next_state <= fetch_state;
end
end
default : begin
next_state <= fetch_state;
end
endcase
//
// Single byte stack operators
// Do not advance PC
//
end
4'pb 0011 : begin
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
pc_ctrl <= latch_pc;
case (op_code[3:0])
4'b 0000 : begin
// tsx
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlé6;
cc_ctrl <= latch_cc;
ix_ctrl <= load_ix;
sp_ctrl <= latch_sp;

cpullalt.v Page 26

next_state <= fetch_state;

end
4'pb 0001 : begin
// ins

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= fetch_state;

end
4'pb 0010 : begin
// pula

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= pula_state;

end
4'pb 0011 : begin
// pulb

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= pulb_state;

end
4'p 0100 : begin
// des

// decrement sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= fetch_state;

end
4'b 0101 : begin
// txs

left_ctrl <= ix_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= fetch_state;

end
4'b 0110 : begin
// psha

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
next_state <= psha_state;

end
4'b 0111 : begin
// pshb

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
next_state <= pshb_state;

end
4'b 1000 : begin
// pulx

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlé;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= pulx_hi_state;

end
4'b 1001 : begin
// rts

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlé;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;

cpullalt.v Page 27

next_state <= rts_hi_state;

end
4'b 1010 : begin
// abx

left_ctrl <= ix_left;
right_ctrl <= accb_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;
ix_ctrl <= load_ix;
sp_ctrl <= latch_sp;
next_state <= fetch_state;

end
4'p 1011 : begin
// rti

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= load_sp;
next_state <= rti_cc_state;

end
4'b 1100 : begin
// pshx

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;

cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= latch_sp;
next_state <= pshx_lo_state;

end
4'p 1101 : begin
// mul

left_ctrl <= acca_left;
right_ctrl <= accb_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
next_state <= mul_state;

end
4'p 1110 : begin
// wai

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;

cc_ctrl <= latch_cc;

ix_ctrl <= latch_ix;

sp_ctrl <= latch_sp;
next_state <= int_pcl_state;

end
4'pb 1111 : begin
// swi

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
next_state <= int_pcl_state;

end

default : begin
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
next_state <= fetch_state;

end

endcase

//

// Accumulator A Single operand

// source = Acc A dest = Acc A

// Do not advance PC

//

end
4'b 0100 : begin

// acca single op

md_ctrl <= fetch_first_md;

accb_ctrl <= latch_accb;

pc_ctrl <= latch_pc;

ix_ctrl <= latch_ix;

sp_ctrl <= latch_sp;

left_ctrl <= acca_left;

case (op_code[3:0])

4'b 0000 : begin
// neg
right_ctrl <= zero_right;
alu_ctrl <= alu_neg;

cpullalt.v

acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'b 0011 : begin
// com

right_ctrl <= zero_right;
alu_ctrl <= alu_com;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'pb 0100 : begin
// lsr

right_ctrl <= zero_right;
alu_ctrl <= alu_lsrsg;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'b 0110 : begin
// ror

right_ctrl <= zero_right;
alu_ctrl <= alu_ror8;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'pb 0111 : begin
// asr

right_ctrl <= zero_right;
alu_ctrl <= alu_asrs;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'b 1000 : begin
// asl

right_ctrl <= zero_right;
alu_ctrl <= alu_asl8;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'b 1001 : begin
// rol

right_ctrl <= zero_right;
alu_ctrl <= alu_rol8;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'b 1010 : begin
// dec

right_ctrl <= plus_one_right;
alu_ctrl <= alu_dec;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end

4'b 1011 : begin
// undefined
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
acca_ctrl <= latch_acca;
cc_ctrl <= latch_cc;

end
4'b 1100 : begin
// inc

right_ctrl <= plus_one_right;
alu_ctrl <= alu_inc;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end
4'pb 1101 : begin
// tst

right_ctrl <= zero_right;
alu_ctrl <= alu_st8;
acca_ctrl <= latch_acca;
cc_ctrl <= load_cc;

end
4'b 1110 : begin
// Jmp

right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
acca_ctrl <= latch_acca;
cc_ctrl <= latch_cc;

end
4'pb 1111 : begin
// clr

right_ctrl <= zero_right;
alu_ctrl <= alu_clr;
acca_ctrl <= load_acca;
cc_ctrl <= load_cc;

end

default : begin
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
acca_ctrl <= latch_acca;

Page 28

cpullalt.v Page 29

cc_ctrl <= latch_cc;
end
endcase
next_state <= fetch_state;
//
// single operand acc b
// Do not advance PC
//
end
4'b 0101 : begin
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
pc_ctrl <= latch_pc;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
left_ctrl <= accb_left;
case (op_code[3:0])
4'b 0000 : begin
// neg
right_ctrl <= zero_right;
alu_ctrl <= alu_neg;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 0011 : begin
// com

right_ctrl <= zero_right;
alu_ctrl <= alu_com;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 0100 : begin
// lsr

right_ctrl <= zero_right;
alu_ctrl <= alu_1sr8;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'pb 0110 : begin
// ror

right_ctrl <= zero_right;
alu_ctrl <= alu_ror8;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 0111 : begin
// asr

right_ctrl <= zero_right;
alu_ctrl <= alu_asr8;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 1000 : begin
// asl

right_ctrl <= zero_right;
alu_ctrl <= alu_asls;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 1001 : begin
// rol

right_ctrl <= zero_right;
alu_ctrl <= alu_rol8;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'p 1010 : begin
// dec

right_ctrl <= plus_one_right;
alu_ctrl <= alu_dec;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end

4'b 1011 : begin
// undefined
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
accb_ctrl <= latch_accb;
cc_ctrl <= latch_cc;

end
4'b 1100 : begin
// inc

right_ctrl <= plus_one_right;
alu_ctrl <= alu_inc;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;

end
4'b 1101 : begin
// tst

right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;

cpullalt.v Page 30

accb_ctrl <= latch_accb;
cc_ctrl <= load_cc;

end
4'b 1110 : begin
// Jmp

right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
accb_ctrl <= latch_accb;
cc_ctrl <= latch_cc;

end
4'p 1111 : begin
// clr

right_ctrl <= zero_right;
alu_ctrl <= alu_clr;
accb_ctrl <= load_accb;
cc_ctrl <= load_cc;
end
default : begin
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
accb_ctrl <= latch_accb;
cc_ctrl <= latch_cc;
end
endcase
next_state <= fetch_state;
//
// Single operand indexed
// Two byte instruction so advance PC
// EA should hold index offset
//
end
4'b 0110 : begin
// indexed single op
md_ctrl <= fetch_ first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
next_state <= indexed_state;
//
// Single operand extended addressing
// three byte instruction so advance the PC
// Low order EA holds high order address
//
end
4'b 0111 : begin
// extended single op
md_ctrl <= fetch_ first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
next_state <= extended_state;
end
4'b 1000 : begin
// acca immediate
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
// subdd #
// cpx #
// lds #
// bsr
case (op_code[3:0])
4'pb 0011,4'b 1100,4'b 1110 : begin
next_state <= immediatel6_state;
end
4'b 1101 : begin
next_state <= bsr_state;
end
default : begin

cpullalt.v

next_state <= fetch_state;

end
endcase
// acca direct
end
4'b 1001 : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
pc_ctrl <= inc_pc;
// staa direct
case (op_code[3:0])
4'pb 0111 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;

next_state <= write8_state;

// sts direct

end

4'b 1111 : begin
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;

next_state <= writel6_state;

// Jjsr direct

end

4'p 1101 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;

md_ctrl <= fetch_first_md;

next_state <= jsr_state;
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;

md_ctrl <= fetch_ first_md;
next_state <= read8_state;

end
endcase
// acca indexed

end

4'b 1010 : begin
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;

next_state <= indexed_state;

// acca extended

end

4'pb 1011 : begin
md_ctrl <= fetch_ first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;

next_state <= extended_state;

// accb immediate

end

4'b 1100 : begin
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;

Page 31

cpullalt.v Page 32

cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
// addd #
// 1dd #
// 1ldx #
case (op_code[3:0])
4'pb 0011,4'b 1100,4'b 1110 : begin
next_state <= immediatel6_state;
end
default : begin
next_state <= fetch_state;
end
endcase
// accb direct
end
4'b 1101 : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
pc_ctrl <= inc_pc;
// stab direct
case (op_code[3:0])
4'pb 0111 : begin
left_ctrl <= accb_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= write8_state;
// std direct
end
4'b 1101 : begin
left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;
// stx direct
end
4'pb 1111 : begin
left_ctrl <= ix_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stlé6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
next_state <= read8_state;
end
endcase
// accb indexed
end
4'b 1110 : begin
md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
next_state <= indexed_state;
// accb extended
end
4'p 1111 : begin
md_ctrl <= fetch_ first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// increment the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
next_state <= extended_state;
end
default : begin

cpullalt.v Page 33

md_ctrl <= fetch_first_md;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
// idle the pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= latch_pc;
next_state <= fetch_state;
end
endcase
end
immediatel6_state : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
op_ctrl <= latch_op;
iv_ctrl <= latch_iv;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment pc
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= inc_pc;
// fetch next immediate byte
md_ctrl <= fetch_next_md;
addr_ctrl <= fetch_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;
//
// ea holds 8 bit index offet
// calculate the effective memory address
// using the alu
//
end
indexed_state : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
// calculate effective address from index reg
// index offest is not sign extended
ea_ctrl <= add_ix_ea;
// idle the bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
// work out next state
// single op indexed
case (op_code[7:4])
4'b 0110 : begin
md_ctrl <= latch_md;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// undefined
// Jmp
// acca indexed
case (op_code[3:0])
4'b 1011 : begin
next_state <= fetch_state;
end
4'p 1110 : begin
next_state <= jmp_state;
end
default : begin
next_state <= read8_state;
end
endcase
// staa
// Jsr
// sts
end
4'b 1010 : begin
case (op_code[3:0])
4'b 0111 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;

cpullalt

.V

next_state <= write8_state;

end

en
4

4'pb 1101 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= jsr_state;

end

4'p 1111 : begin
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stle6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;

end

default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= read8_state;

end

endcase

// accb indexed

// stab direct

// std direct

// stx direct

d

b 1110 : begin

case (op_code[3:0])

4'pb 0111 : begin
left_ctrl <= accb_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= write8_state;

end

4'pb 1101 : begin
left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stlé6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;

end

4'pb 1111 : begin
left_ctrl <= ix_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stle6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;

end

default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= read8_state;

end

endcase

end

de

fault : begin

md_ctrl <= latch_md;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
next_state <= fetch_state;

end
endcase

//
//
//
//
//
//
end
exte

//

ea holds the low byte of the absolute address
Move ea low byte into ea high byte
load new ea low byte to for absolute 16 bit address

advance the program counter

nded_state : begin
fetch ea low byte

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
iv_ctrl <= latch_iv;

Page 34

cpullalt.v

op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;

// increment pc

pc_ctrl <= inc_pc;

// fetch next effective address
ea_ctrl <= fetch_next_ea;
addr_ctrl <= fetch_ad;
dout_ctrl <= md_lo_dout;
// work out the next state
// single op extended

// undefined

// jmp

case (op_code[7:4])

4'b

0111 : begin

md_ctrl <= latch_md;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;

case (op_code[3:0])

4'pb 1011 : begin

next_state <= fetch_state;
end
4'b 1110 : begin

next_state <= jmp_state;
end

default : begin

next_state <= read8_state;

end

endcase

// acca extended
// staa

// Jsr

// sts

end
4'b

1011 : begin

case (op_code[3:0])

40

b 0111 : begin

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= write8_state;

end

40

b 1101 : begin

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= jsr_state;

end

40

b 1111 : begin

left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= latch_cc;

md_ctrl <= load_md;
next_state <= writel6_state;

end
default : begin

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= read8_state;

end
endcase

//
//
//
//
end
4'b

accb extended
stab
std
stx

1111 : begin

case (op_code[3:0])

40

b 0111 : begin

left_ctrl <= accb_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= write8_state;

end

40

b 1101 : begin

left_ctrl <= accd_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;

bytes

Page 35

cpullalt.v Page 36

next_state <= writel6_state;
end
4'p 1111 : begin
left_ctrl <= ix_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stle6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;
next_state <= writel6_state;
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= read8_state;
end
endcase
end
default : begin
md_ctrl <= latch_md;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
next_state <= fetch_state;
end
endcase
//
// here if ea holds low byte (direct page)
// can enter here from extended addressing
// read memory location
// note that reads may be 8 or 16 bits
//
end
read8_state : begin
// read data
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
//
addr_ctrl <= read_ad;
dout_ctrl <= md_lo_dout;
// single operand
// acca
case (op_code[7:4])
4'pb 0110,4'b 0111 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
ea_ctrl <= latch_ea;
next_state <= execute_state;
// subd
// 1lds
// cpx
end
4'pb 1001,4'b 1010,4'b 1011 : begin
case (op_code[3:0])
4'pb 0011,4'b 1110,4'b 1100 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
// increment the effective address in case of 16 bit load
ea_ctrl <= inc_ea;
next_state <= readl6_state;
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
ea_ctrl <= latch_ea;
next_state <= fetch_state;
end
endcase
// accb
// addd
// 1ldd
// ldx
end

cpullalt.v Page 37

4'pb 1101,4'b 1110,4'b 1111 : begin
case (op_code[3:0])
4'pb 0011,4'b 1100,4'b 1110 : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
// increment the effective address in case of 16 bit load
ea_ctrl <= inc_ea;
next_state <= readl6_state;
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_ first_md;
ea_ctrl <= latch_ea;
next_state <= execute_state;
end
endcase
end
default : begin
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= fetch_first_md;
ea_ctrl <= latch_ea;
next_state <= fetch_state;
end
endcase
// read second data byte from ea
// default
end
readl6_state : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// idle the effective address
ea_ctrl <= latch_ea;
// read the low byte of the 16 bit data
md_ctrl <= fetch_next_md;
addr_ctrl <= read_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;
//
// 16 bit Write state
// write high byte of ALU output.
// EA hold address of memory to write to
// Advance the effective address in ALU
//
end
writel6_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
// increment the effective address
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
ea_ctrl <= inc_ea;
// write the ALU hi byte to ea
addr_ctrl <= write_ad;
dout_ctrl <= md_hi_dout;
next_state <= write8_state;
//
// 8 bit write
// Write low 8 bits of ALU output
//
end
write8_state : begin
// default registers

cpullalt.v Page 38

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// idle the ALU
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// write ALU low byte output
addr_ctrl <= write_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;

end

jmp_state : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// load PC with effective address
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= load_ea_pc;
// idle the bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;

end
jsr_state : begin
// JSR

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write pc low
addr_ctrl <= push_ad;
dout_ctrl <= pc_lo_dout;
next_state <= jsrl_state;
end
jsrl_state : begin
// JSR
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write pc hi
addr_ctrl <= push_ad;
dout_ctrl <= pc_hi_dout;
next_state <= jmp_state;
end
branch_state : begin
// Bcc
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;

cpullalt.v Page 39

ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// calculate signed branch
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
pc_ctrl <= add_ea_pc;
// idle the bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;
end
bsr_state : begin
// BSR
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write pc low
addr_ctrl <= push_ad;
dout_ctrl <= pc_lo_dout;
next_state <= bsrl_state;
end
bsrl_state : begin
// BSR
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write pc hi
addr_ctrl <= push_ad;
dout_ctrl <= pc_hi_dout;
next_state <= branch_state;
end
rts_hi_state : begin
// RTS
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment the sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlé;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// read pc hi
pc_ctrl <= pull_hi_pc;
addr_ctrl <= pull_ad;
dout_ctrl <= pc_hi_dout;
next_state <= rts_lo_state;

end
rts_lo_state : begin
// RTS1

// default

cpullalt.v Page 40

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// idle the ALU

left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;

// read pc low

pc_ctrl <= pull_lo_pc;
addr_ctrl <= pull_ad;
dout_ctrl <= pc_lo_dout;
next_state <= fetch_state;

end
mul_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_acchb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// move acca to md
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_stl6;
cc_ctrl <= latch_cc;
md_ctrl <= load_md;

// idle bus

addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mulea_state;

end
mulea_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
md_ctrl <= latch_md;
// idle ALU
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// move accb to ea
ea_ctrl <= load_accb_ea;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= muld_state;
end
muld_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
md_ctrl <= latch_md;
// clear accd
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_1d8;
cc_ctrl <= latch_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mulO_state;
end
mulO_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;

cpullalt.v Page 41

pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 0 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlo6;
if(eal0] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mull_state;
end
mull_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 1 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlé;
if(eal[l] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mul2_state;
end
mul2_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 2 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlo6;
if(eal2] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mul3_state;
end
mul3_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;

cpullalt.v Page 42

ea_ctrl <= latch_ea;
// if bit 3 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlo6;
if(eal3] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= muléd_state;
end
muld4_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 4 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlé;
if(eal[4] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mulb5_state;
end
mul5_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 5 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlo6;
if(eal5] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mul6_state;
end
mul6_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 6 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;

cpullalt.v Page 43

alu_ctrl <= alu_addlo6;
if(eal6] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= mul7_state;
end
mul7_state : begin
// default
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// if bit 7 of ea set, add accd to md
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_addlé;
if(eal7] == 1'bl) begin
cc_ctrl <= load_cc;
acca_ctrl <= load_hi_acca;
accb_ctrl <= load_accb;
end
else begin
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
end
md_ctrl <= shiftl_md;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;
end
execute_state : begin
// execute single operand instruction
// default
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
// indexed single op
// extended single op
case (op_code[7:4])
4'pb 0110,4'b 0111 : begin
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
iv_ctrl <= latch_iv;
ea_ctrl <= latch_ea;
// idle the bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
case (op_code[3:0])
4'b 0000 : begin
// neg
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_neg;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;

end
4'b 0011 : begin
// com

left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_com;
cc_ctrl <= load_cc;

md_ctrl <= load_md;
next_state <= write8_state;

end
4'pb 0100 : begin
// lsr

left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_1lsr8;
cc_ctrl <= load_cc;
md_ctrl <= load_md;

cpullalt.v

next_state <= write8_state;
end
4'b 0110 : begin
// ror
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_ror8;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 0111 : begin
// asr
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_asr$8;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 1000 : begin
// asl
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_asl8;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 1001 : begin
// rol
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_rol8;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 1010 : begin
// dec
left_ctrl <= md_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_dec;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 1011 : begin
// undefined
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= fetch_state;
end
4'b 1100 : begin
// inc
left_ctrl <= md_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_inc;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;
end
4'b 1101 : begin
// tst
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_st8§;
cc_ctrl <= load_cc;
md_ctrl <= latch_md;
next_state <= fetch_state;
end
4'p 1110 : begin
// jmp
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= fetch_state;
end
4'b 1111 : begin
// clr
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_clr;
cc_ctrl <= load_cc;
md_ctrl <= load_md;
next_state <= write8_state;

Page 44

cpullalt.v Page 45

end
default : begin
left_ctrl <= md_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
md_ctrl <= latch_md;
next_state <= fetch_state;
end
endcase
end
default : begin
left_ctrl <= accd_left;
right_ctrl <= md_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
ea_ctrl <= latch_ea;
// idle the bus
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= fetch_state;
end
endcase
end
psha_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write acca
addr_ctrl <= push_ad;
dout_ctrl <= acca_dout;
next_state <= fetch_state;
end
pula_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// idle sp
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
sp_ctrl <= latch_sp;
// read acca
acca_ctrl <= pull_acca;
addr_ctrl <= pull_ad;
dout_ctrl <= acca_dout;
next_state <= fetch_state;
end
pshb_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;

cpullalt.v Page 46

cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write accb
addr_ctrl <= push_ad;
dout_ctrl <= accb_dout;
next_state <= fetch_state;
end
pulb_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// idle sp
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
sp_ctrl <= latch_sp;
// read accb
accb_ctrl <= pull_accb;
addr_ctrl <= pull_ad;
dout_ctrl <= accb_dout;
next_state <= fetch_state;
end
pshx_lo_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write ix low
addr_ctrl <= push_ad;
dout_ctrl <= ix_lo_dout;
next_state <= pshx_hi_state;
end
pshx_hi_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write ix hi
addr_ctrl <= push_ad;
dout_ctrl <= ix_hi_dout;
next_state <= fetch_state;
end
pulx_hi_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;

cpullalt.v Page 47

// pull ix hi
ix_ctrl <= pull_hi_ix;
addr_ctrl <= pull_ad;
dout_ctrl <= ix_hi_dout;
next_state <= pulx_lo_state;

end

pulx_lo_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// idle sp
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
sp_ctrl <= latch_sp;
// read ix low
ix_ctrl <= pull_lo_ix;
addr_ctrl <= pull_ad;
dout_ctrl <= ix_lo_dout;
next_state <= fetch_state;
//
// return from interrupt
// enter here from bogus interrupts
//

end

rti_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
sp_ctrl <= load_sp;
// idle address bus
cc_ctrl <= latch_cc;
addr_ctrl <= idle_ad;
dout_ctrl <= cc_dout;
next_state <= rti_cc_state;

end

rti_cc_state : begin
// default registers
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
sp_ctrl <= load_sp;
// read cc
cc_ctrl <= pull_cc;
addr_ctrl <= pull_ad;
dout_ctrl <= cc_dout;
next_state <= rti_accb_state;

end

rti_accb_state : begin
// default registers
acca_ctrl <= latch_acca;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addl6;
cc_ctrl <= latch_cc;

cpullalt.v

sp_ctrl <= load_sp;
// read accb
accb_ctrl <= pull_accb;
addr_ctrl <= pull_ad;
dout_ctrl <= accb_dout;
next_state <= rti_acca_state;

end

rti_acca_state : begin
// default registers
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// read acca
acca_ctrl <= pull_acca;
addr_ctrl <= pull_ad;
dout_ctrl <= acca_dout;
next_state <= rti_ixh_state;

end
rti_ixh_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
pc_ctrl <= latch_pc;

md_ctrl <= latch_md;

iv_ctrl <= latch_iv;

op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// increment sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

sp_ctrl <= load_sp;

// read ix hi

ix_ctrl <= pull_hi_ix;
addr_ctrl <= pull_ad;
dout_ctrl <= ix_hi_dout;
next_state <= rti_ixl_state;

end
rti_ixl_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
pc_ctrl <= latch_pc;

md_ctrl <= latch_md;

iv_ctrl <= latch_iv;

op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// increment sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlo6;
cc_ctrl <= latch_cc;

sp_ctrl <= load_sp;

// read ix low

ix_ctrl <= pull_lo_ix;
addr_ctrl <= pull_ad;
dout_ctrl <= ix_lo_dout;
next_state <= rti_pch_state;

end
rti_pch_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// increment sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_addlé;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;

// pull pc hi

Page 48

cpullalt.v Page 49

pc_ctrl <= pull_hi_pc;
addr_ctrl <= pull_ad;
dout_ctrl <= pc_hi_dout;
next_state <= rti_pcl_state;

end
rti_pcl_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// idle sp
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
sp_ctrl <= latch_sp;
// pull pc low
pc_ctrl <= pull_lo_pc;
addr_ctrl <= pull_ad;
dout_ctrl <= pc_lo_dout;
next_state <= fetch_state;
//
// here on interrupt
// iv register hold interrupt type
//

end

int_pcl_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;
// write pc low
addr_ctrl <= push_ad;
dout_ctrl <= pc_lo_dout;
next_state <= int_pch_state;

end
int_pch_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

pc_ctrl <= latch_pc;

md_ctrl <= latch_md;

iv_ctrl <= latch_iv;

op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;

sp_ctrl <= load_sp;

// write pc hi

addr_ctrl <= push_ad;
dout_ctrl <= pc_hi_dout;
next_state <= int_ix1l_state;

end
int_ixl state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;

cpullalt.v Page 50

sp_ctrl <= load_sp;

// write ix low

addr_ctrl <= push_ad;
dout_ctrl <= ix_lo_dout;
next_state <= int_ixh_state;

end
int_ixh_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

pc_ctrl <= latch_pc;

md_ctrl <= latch_md;

iv_ctrl <= latch_iv;

op_ctrl <= latch_op;

nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublb6;
cc_ctrl <= latch_cc;

sp_ctrl <= load_sp;

// write ix hi

addr_ctrl <= push_ad;
dout_ctrl <= ix_hi_dout;
next_state <= int_acca_state;

end
int_acca_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;

pc_ctrl <= latch_pc;

md_ctrl <= latch_md;

iv_ctrl <= latch_iv;

op_ctrl <= latch_op;

nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;
cc_ctrl <= latch_cc;

sp_ctrl <= load_sp;

// write acca

addr_ctrl <= push_ad;
dout_ctrl <= acca_dout;
next_state <= int_accb_state;

end
int_accb_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp

left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublo6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;

// write accb

addr_ctrl <= push_ad;
dout_ctrl <= accb_dout;
next_state <= int_cc_state;

end
int_cc_state : begin
// default

acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;

// decrement sp
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_sublé6;
cc_ctrl <= latch_cc;
sp_ctrl <= load_sp;

// write cc

addr_ctrl <= push_ad;
dout_ctrl <= cc_dout;

cpullalt.v Page 51

nmi_ctrl <= latch_nmi;
//
// nmi is edge triggered
// nmi_req is cleared when nmi goes low.
//
if(nmi_req == 1'bl) begin
iv_ctrl <= nmi_iv;
next_state <= vect_hi_state;

end
else begin
//
// IRQ is level sensitive
//
if((irg == 1'bl) && (cc[IBIT] == 1'b0)) begin

iv_ctrl <= irqg iv;
next_state <= int_mask_state;
end
else if((irg_icf == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= icf_iv;
next_state <= int_mask_state;
end
else if((irg_ocf == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= ocf_iv;
next_state <= int_mask_state;
end
else if((irg_tof == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= tof_iv;
next_state <= int_mask_state;
end
else if((irg_sci == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= sci_iv;
next_state <= int_mask_state;
end
else begin
case (op_code)
8'b 00111110 : begin
// WAI (wait for interrupt)
iv_ctrl <= latch_iv;
next_state <= int_wai_state;
end
8'b 00111111 : begin
// SWI (Software interrupt)
iv_ctrl <= swi_iv;
next_state <= vect_hi_state;
end
default : begin
// bogus interrupt (return)
iv_ctrl <= latch_iv;
next_state <= rti_state;
end
endcase
end
end
end
int_wai_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
op_ctrl <= latch_op;
ea_ctrl <= latch_ea;
// enable interrupts
left_ctrl <= sp_left;
right_ctrl <= plus_one_right;
alu_ctrl <= alu_cli;
cc_ctrl <= load_cc;
sp_ctrl <= latch_sp;
// idle bus
addr_ctrl <= idle_ad;
dout_ctrl <= cc_dout;
if((nmi_req == 1'bl) && (nmi_ack == 1'b0)) begin
iv_ctrl <= nmi_iv;
nmi_ctrl <= set_nmi;
next_state <= vect_hi_state;

end
else begin
//
// nmi request is not cleared until nmi input goes low
//
if((nmi_req == 1'b0) && (nmi_ack == 1'bl)) begin
nmi_ctrl <= reset_nmi;
end

else begin
nmi_ctrl <= latch_nmi;
end
//
// IRQ is level sensitive
//
if((irg == 1'bl) && (cc[IBIT] == 1'b0)) begin

cpullalt.v Page 52

iv_ctrl <= irg iv;
next_state <= int_mask_state;
end
else if((irg_icf == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= icf_iv;
next_state <= int_mask_state;
end
else if((irg_ocf == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= ocf_iv;
next_state <= int_mask_state;
end
else if((irg_tof == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= tof_iv;
next_state <= int_mask_state;
end
else if((irg_sci == 1'bl) && (cc[IBIT] == 1'b0)) begin
iv_ctrl <= sci_iv;
next_state <= int_mask_state;
end
else begin
iv_ctrl <= latch_iv;
next_state <= int_wai_state;
end
end
end
int_mask_state : begin
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// Mask IRQ
left_ctrl <= sp_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_sei;
cc_ctrl <= load_cc;
sp_ctrl <= latch_sp;
// idle bus cycle
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= vect_hi_state;
end
halt_state : begin
// halt CPU.
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// do nothing in ALU
left_ctrl <= acca_left;
right_ctrl <= zero_right;
alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// idle bus cycle
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
if (halt == 1'bl) begin
next_state <= halt_state;
end
else begin
next_state <= fetch_state;
end
end
default : begin
// error state halt on undefine states
// default
acca_ctrl <= latch_acca;
accb_ctrl <= latch_accb;
ix_ctrl <= latch_ix;
sp_ctrl <= latch_sp;
pc_ctrl <= latch_pc;
md_ctrl <= latch_md;
iv_ctrl <= latch_iv;
op_ctrl <= latch_op;
nmi_ctrl <= latch_nmi;
ea_ctrl <= latch_ea;
// do nothing in ALU
left_ctrl <= acca_left;
right_ctrl <= zero_right;

cpullalt.v

alu_ctrl <= alu_nop;
cc_ctrl <= latch_cc;
// idle bus cycle
addr_ctrl <= idle_ad;
dout_ctrl <= md_lo_dout;
next_state <= error_state;

end

endcase

end
// endmodule

[/
//
// state machine
//
[/
always @ (negedge clk) //(negedge clk or negedge rst or
begin
if(rst == 1'bl) begin
state <= reset_state;
end
else if (hold == 1'bl) begin
state <= state;
end

else begin
state <= next_state;
end
end
endmodule

negedge state or negedge hold)

Page 53

