
cpu01alt.v Page 1

//===--
//
// S Y N T H E Z I A B L E CPU01 C O R E
//
// www.OpenCores.Org - December 2002
// This core adheres to the GNU public license
//
// File name : cpu01.vhd
//
// Purpose : Implements a 6801 compatible CPU core
//
// Dependencies : ieee.Std_Logic_1164
// ieee.std_logic_unsigned
//
// Author : John E. Kent
//
//===----
//
// Revision History:
//
// Date: Revision Author
// 22 Sep 2002 0.1 John Kent
//
// 30 Oct 2002 0.2 John Kent
// made NMI edge triggered
//
// 30 Oct 2002 0.3 John Kent
// more corrections to NMI
// added wai_wait_state to prevent stack overflow on wai.
//
// 1 Nov 2002 0.4 John Kent
// removed WAI states and integrated WAI with the interrupt service routine
// replace Data out (do) and Data in (di) register with a single Memory Data (md) reg.
// Added Multiply instruction states.
// run ALU and CC out of CPU module for timing measurements.
//
// 3 Nov 2002 0.5 John Kent
// Memory Data Register was not loaded on Store instructions
// SEV and CLV were not defined in the ALU
// Overflow Flag on NEG was incorrect
//
// 16th Feb 2003 0.6 John Kent
// Rearranged the execution cycle for dual operand instructions
// so that occurs during the following fetch cycle.
// This allows the reduction of one clock cycle from dual operand
// instruction. Note that this also necessitated re-arranging the
// program counter so that it is no longer incremented in the ALU.
// The effective address has also been re-arranged to include a
// separate added. The STD (store accd) now sets the condition codes.
//
// 28th Jun 2003 0.7 John Kent
// Added Hold and Halt signals. Hold is used to steal cycles from the
// CPU or add wait states. Halt puts the CPU in the inactive state
// and is only honoured in the fetch cycle. Both signals are active high.
//
// 24 Aug 2003 1.0 John Kent
// Converted 6800 core to 6801 by removing alu_cpx
// Also added 4 extra interrupt inputs
//
// 16 January 2004 1.1 John Kent (by Michael Hasenfratz)
// Failure to clear carry bit during CLR instructions
// Corrected CLR instructions to set alu_ctrl to alu_clr instead of alu_ld8.
//

module cpu01(
clk,
rst,
rw,
vma,
address,
data_in,
data_out,
hold,
halt,
irq,
nmi,
irq_icf,
irq_ocf,
irq_tof,
irq_sci,
test_alu,
test_cc
);

input clk;
input rst;
output rw;
output vma;
output[15:0] address;
input[7:0] data_in;
output[7:0] data_out;

cpu01alt.v Page 2

input hold;
input halt;
input irq;
input nmi;
input irq_icf;
input irq_ocf;
input irq_tof;
input irq_sci;
output[15:0] test_alu;
output[7:0] test_cc;

wire clk;
wire rst;
reg rw;
reg vma;
reg [15:0] address;
wire [7:0] data_in;
reg [7:0] data_out;
wire hold;
wire halt;
wire irq;
wire nmi;
wire irq_icf;
wire irq_ocf;
wire irq_tof;
wire irq_sci;
reg [15:0] test_alu;
reg [7:0] test_cc;

parameter SBIT = 7;
parameter XBIT = 6;
parameter HBIT = 5;
parameter IBIT = 4;
parameter NBIT = 3;
parameter ZBIT = 2;
parameter VBIT = 1;
parameter CBIT = 0;
parameter [5:0]
 reset_state = 0,
 fetch_state = 1,
 decode_state = 2,
 extended_state = 3,
 indexed_state = 4,
 read8_state = 5,
 read16_state = 6,
 immediate16_state = 7,
 write8_state = 8,
 write16_state = 9,
 execute_state = 10,
 halt_state = 11,
 error_state = 12,
 mul_state = 13,
 mulea_state = 14,
 muld_state = 15,
 mul0_state = 16,
 mul1_state = 17,
 mul2_state = 18,
 mul3_state = 19,
 mul4_state = 20,
 mul5_state = 21,
 mul6_state = 22,
 mul7_state = 23,
 jmp_state = 24,
 jsr_state = 25,
 jsr1_state = 26,
 branch_state = 27,
 bsr_state = 28,
 bsr1_state = 29,
 rts_hi_state = 30,
 rts_lo_state = 31,
 int_pcl_state = 32,
 int_pch_state = 33,
 int_ixl_state = 34,
 int_ixh_state = 35,
 int_cc_state = 36,
 int_acca_state = 37,
 int_accb_state = 38,
 int_wai_state = 39,
 int_mask_state = 40,
 rti_state = 41,
 rti_cc_state = 42,
 rti_acca_state = 43,
 rti_accb_state = 44,
 rti_ixl_state = 45,
 rti_ixh_state = 46,
 rti_pcl_state = 47,
 rti_pch_state = 48,
 pula_state = 49,
 psha_state = 50,
 pulb_state = 51,

cpu01alt.v Page 3

 pshb_state = 52,
 pulx_lo_state = 53,
 pulx_hi_state = 54,
 pshx_lo_state = 55,
 pshx_hi_state = 56,
 vect_lo_state = 57,
 vect_hi_state = 58;
parameter [2:0]
 idle_ad = 0,
 fetch_ad = 1,
 read_ad = 2,
 write_ad = 3,
 push_ad = 4,
 pull_ad = 5,
 int_hi_ad = 6,
 int_lo_ad = 7;
parameter [3:0]
 md_lo_dout = 0,
 md_hi_dout = 1,
 acca_dout = 2,
 accb_dout = 3,
 ix_lo_dout = 4,
 ix_hi_dout = 5,
 cc_dout = 6,
 pc_lo_dout = 7,
 pc_hi_dout = 8;
parameter [1:0]
 reset_op = 0,
 fetch_op = 1,
 latch_op = 2;
parameter [2:0]
 reset_acca = 0,
 load_acca = 1,
 load_hi_acca = 2,
 pull_acca = 3,
 latch_acca = 4;
parameter [1:0]
 reset_accb = 0,
 load_accb = 1,
 pull_accb = 2,
 latch_accb = 3;
parameter [1:0]
 reset_cc = 0,
 load_cc = 1,
 pull_cc = 2,
 latch_cc = 3;
parameter [2:0]
 reset_ix = 0,
 load_ix = 1,
 pull_lo_ix = 2,
 pull_hi_ix = 3,
 latch_ix = 4;
parameter [1:0]
 reset_sp = 0,
 latch_sp = 1,
 load_sp = 2;
parameter [2:0]
 reset_pc = 0,
 latch_pc = 1,
 load_ea_pc = 2,
 add_ea_pc = 3,
 pull_lo_pc = 4,
 pull_hi_pc = 5,
 inc_pc = 6;
parameter [2:0]
 reset_md = 0,
 latch_md = 1,
 load_md = 2,
 fetch_first_md = 3,
 fetch_next_md = 4,
 shiftl_md = 5;
parameter [2:0]
 reset_ea = 0,
 latch_ea = 1,
 add_ix_ea = 2,
 load_accb_ea = 3,
 inc_ea = 4,
 fetch_first_ea = 5,
 fetch_next_ea = 6;
parameter [3:0]
 reset_iv = 0,
 latch_iv = 1,
 swi_iv = 2,
 nmi_iv = 3,
 irq_iv = 4,
 icf_iv = 5,
 ocf_iv = 6,
 tof_iv = 7,
 sci_iv = 8;
parameter [1:0]
 reset_nmi = 0,

cpu01alt.v Page 4

 set_nmi = 1,
 latch_nmi = 2;
parameter [2:0]
 acca_left = 0,
 accb_left = 1,
 accd_left = 2,
 md_left = 3,
 ix_left = 4,
 sp_left = 5;
parameter [1:0]
 md_right = 0,
 zero_right = 1,
 plus_one_right = 2,
 accb_right = 3;
parameter [5:0]
 alu_add8 = 0,
 alu_sub8 = 1,
 alu_add16 = 2,
 alu_sub16 = 3,
 alu_adc = 4,
 alu_sbc = 5,
 alu_and = 6,
 alu_ora = 7,
 alu_eor = 8,
 alu_tst = 9,
 alu_inc = 10,
 alu_dec = 11,
 alu_clr = 12,
 alu_neg = 13,
 alu_com = 14,
 alu_inx = 15,
 alu_dex = 16,
 alu_lsr16 = 17,
 alu_lsl16 = 18,
 alu_ror8 = 19,
 alu_rol8 = 20,
 alu_asr8 = 21,
 alu_asl8 = 22,
 alu_lsr8 = 23,
 alu_sei = 24,
 alu_cli = 25,
 alu_sec = 26,
 alu_clc = 27,
 alu_sev = 28,
 alu_clv = 29,
 alu_tpa = 30,
 alu_tap = 31,
 alu_ld8 = 32,
 alu_st8 = 33,
 alu_ld16 = 34,
 alu_st16 = 35,
 alu_nop = 36,
 alu_daa = 37;
reg [7:0] op_code;
reg [7:0] acca;
reg [7:0] accb;
reg [7:0] cc;
reg [7:0] cc_out;
reg [15:0] xreg;
reg [15:0] sp;
reg [15:0] ea;
reg [15:0] pc;
reg [15:0] md;
reg [15:0] left;
reg [15:0] right;
reg [15:0] out_alu;
reg [2:0] iv;
reg nmi_req;
reg nmi_ack;
reg [5:0] state;
reg [5:0] next_state;
reg [2:0] pc_ctrl;
reg [2:0] ea_ctrl;
reg [1:0] op_ctrl;
reg [2:0] md_ctrl;
reg [2:0] acca_ctrl;
reg [1:0] accb_ctrl;
reg [2:0] ix_ctrl;
reg [1:0] cc_ctrl;
reg [1:0] sp_ctrl;
reg [3:0] iv_ctrl;
reg [2:0] left_ctrl;
reg [1:0] right_ctrl;
reg [5:0] alu_ctrl;
reg [2:0] addr_ctrl;
reg [3:0] dout_ctrl;
reg [1:0] nmi_ctrl;

 //--------------------------------
 //
 // Address bus multiplexer

cpu01alt.v Page 5

 //
 //--------------------------------

/*
case (4_bit_expression)
 4'b0000 :
 begin
 statement1;
 end
 4'b1010:
 begin
 statement2;
 end
 default :
 begin
 statement3;
 end
endcase */
 always @ (negedge clk) //(clk or addr_ctrl or pc or ea or sp or iv)
 begin
 case(addr_ctrl)
 idle_ad : begin
 address <= 16'b1111111111111111;
 vma <= 1'b0;
 rw <= 1'b1;
 end
 fetch_ad : begin
 address <= pc;
 vma <= 1'b1;
 rw <= 1'b1;
 end
 read_ad : begin
 address <= ea;
 vma <= 1'b1;
 rw <= 1'b1;
 end
 write_ad : begin
 address <= ea;
 vma <= 1'b1;
 rw <= 1'b0;
 end
 push_ad : begin
 address <= sp;
 vma <= 1'b1;
 rw <= 1'b0;
 end
 pull_ad : begin
 address <= sp;
 vma <= 1'b1;
 rw <= 1'b1;
 end
 int_hi_ad : begin
 address <= {12'b 111111111111,iv,1'b0};
 vma <= 1'b1;
 rw <= 1'b1;
 end
 int_lo_ad : begin
 address <= {12'b 111111111111,iv,1'b1};
 vma <= 1'b1;
 rw <= 1'b1;
 end
 default : begin
 address <= 16'b1111111111111111;
 vma <= 1'b0;
 rw <= 1'b1;
 end
 endcase
 end

// endmodule

//------------------------------
//
// Data Bus output
//
//------------------------------

 always @ (negedge clk) //(clk or dout_ctrl or md or acca or accb or xreg or pc or cc)
 begin
 case(dout_ctrl)
 md_hi_dout : begin
 // alu output
 data_out <= md[15:8] ;
 end
 md_lo_dout : begin
 data_out <= md[7:0] ;
 end
 acca_dout : begin
 // accumulator a
 data_out <= acca;
 end

cpu01alt.v Page 6

 accb_dout : begin
 // accumulator b
 data_out <= accb;
 end
 ix_lo_dout : begin
 // index reg
 data_out <= xreg[7:0] ;
 end
 ix_hi_dout : begin
 // index reg
 data_out <= xreg[15:8] ;
 end
 cc_dout : begin
 // condition codes
 data_out <= cc;
 end
 pc_lo_dout : begin
 // low order pc
 data_out <= pc[7:0] ;
 end
 pc_hi_dout : begin
 // high order pc
 data_out <= pc[15:8] ;
 end
 default : begin
 data_out <= 8'b 00000000;
 end
 endcase
 end

// endmodule

 //------------------------------
 //
 // Program Counter Control
 //
 //--------------------------------
 always @ (negedge clk) //(clk or pc_ctrl or pc or out_alu or data_in or ea or hold)
 begin
 reg [15:0] tempof;
 reg [15:0] temppc;

 case(pc_ctrl)
 add_ea_pc : begin
 if(ea[7] == 1'b0) begin
 tempof = {8'b 00000000,ea[7:0] };
 end
 else begin
 tempof = {8'b 11111111,ea[7:0] };
 end
 end
 inc_pc : begin
 tempof = 16'b0000000000000001;
 end
 default : begin
 tempof = 16'b0000000000000000;
 end
 endcase
 case(pc_ctrl)
 reset_pc : begin
 temppc = 16'b1111111111111110;
 end
 load_ea_pc : begin
 temppc = ea;
 end
 pull_lo_pc : begin
 temppc[7:0] = data_in;
 temppc[15:8] = pc[15:8] ;
 end
 pull_hi_pc : begin
 temppc[7:0] = pc[7:0] ;
 temppc[15:8] = data_in;
 end
 default : begin
 temppc = pc;
 end
 endcase
 end
 // if clk'event and clk = '0' then
 // if hold = '1' then
 // pc <= pc;
 // else
 // pc <= temppc + tempof;
 // end if;
 // end if;
 always @ (negedge clk)
 begin
 if(hold == 1'b1) pc <= pc;
 else pc <= temppc + tempof;
 end
// endmodule

cpu01alt.v Page 7

 //------------------------------
 //
 // Effective Address Control
 //
 //--------------------------------
 always @ (negedge clk) //(clk or ea_ctrl or ea or out_alu or data_in or accb or xreg or hold)
 begin
 reg [15:0] tempind;
 reg [15:0] tempea;

 case(ea_ctrl)
 add_ix_ea : begin
 tempind = {8'b 00000000,ea[7:0] };
 end
 inc_ea : begin
 tempind = 16'b0000000000000001;
 end
 default : begin
 tempind = 16'b0000000000000000;
 end
 endcase
 case(ea_ctrl)
 reset_ea : begin
 tempea = 16'b0000000000000000;
 end
 load_accb_ea : begin
 tempea = {8'b 00000000,accb[7:0] };
 end
 add_ix_ea : begin
 tempea = xreg;
 end
 fetch_first_ea : begin
 tempea[7:0] = data_in;
 tempea[15:8] = 8'b 00000000;
 end
 fetch_next_ea : begin
 tempea[7:0] = data_in;
 tempea[15:8] = ea[7:0] ;
 end
 default : begin
 tempea = ea;
 end
 endcase
 end
 // if clk'event and clk = '0' then
 // if hold = '1' then
 // ea <= ea;
 // else
 // ea <= tempea + tempind;
 // end if;
 // end if;
 always @ (negedge clk)
 begin
 if(hold == 1'b1) ea <= ea;
 else ea <= tempea + tempind;
 end

 //------------------------------
 //
 // Accumulator A
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge acca_ctrl or negedge out_alu or negedge acca or negedge data_
in or negedge hold)
 begin
 if(hold == 1'b1) begin
 acca <= acca;
 end
 else begin
 case(acca_ctrl)
 reset_acca : begin
 acca <= 8'b 00000000;
 end
 load_acca : begin
 acca <= out_alu[7:0] ;
 end
 load_hi_acca : begin
 acca <= out_alu[15:8] ;
 end
 pull_acca : begin
 acca <= data_in;
 end
 default : begin
 // when latch_acca =>
 acca <= acca;
 end
 endcase
 end
 end
// endmodule

cpu01alt.v Page 8

 //------------------------------
 //
 // Accumulator B
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge accb_ctrl or negedge out_alu or negedge accb or negedge data_
in or negedge hold)
 begin
 if(hold == 1'b1) begin
 accb <= accb;
 end
 else begin
 case(accb_ctrl)
 reset_accb : begin
 accb <= 8'b 00000000;
 end
 load_accb : begin
 accb <= out_alu[7:0] ;
 end
 pull_accb : begin
 accb <= data_in;
 end
 default : begin
 // when latch_accb =>
 accb <= accb;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // X Index register
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge ix_ctrl or negedge out_alu or negedge xreg or negedge data_in
 or negedge hold)
 begin
 if(hold == 1'b1) begin
 xreg <= xreg;
 end
 else begin
 case(ix_ctrl)
 reset_ix : begin
 xreg <= 16'b0000000000000000;
 end
 load_ix : begin
 xreg <= out_alu[15:0] ;
 end
 pull_hi_ix : begin
 xreg[15:8] <= data_in;
 end
 pull_lo_ix : begin
 xreg[7:0] <= data_in;
 end
 default : begin
 // when latch_ix =>
 xreg <= xreg;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // stack pointer
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge sp_ctrl or negedge out_alu or negedge hold)
 begin
 if(hold == 1'b1) begin
 sp <= sp;
 end
 else begin
 case(sp_ctrl)
 reset_sp : begin
 sp <= 16'b0000000000000000;
 end
 load_sp : begin
 sp <= out_alu[15:0] ;
 end
 default : begin
 // when latch_sp =>
 sp <= sp;
 end
 endcase
 end
 end

cpu01alt.v Page 9

// endmodule

 //------------------------------
 //
 // Memory Data
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge md_ctrl or negedge out_alu or negedge data_in or negedge md o
r negedge hold)
 begin
 if(hold == 1'b1) begin
 md <= md;
 end
 else begin
 case(md_ctrl)
 reset_md : begin
 md <= 16'b0000000000000000;
 end
 load_md : begin
 md <= out_alu[15:0] ;
 end
 fetch_first_md : begin
 md[15:8] <= 8'b 00000000;
 md[7:0] <= data_in[7:0];
 end
 fetch_next_md : begin
 md[15:8] <= md[7:0] ;
 md[7:0] <= data_in[7:0];
 end
 shiftl_md : begin
 md[15:1] <= md[14:0] ;
 md[0] <= 1'b0;
 end
 default : begin
 // when latch_md =>
 md <= md;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // Condition Codes
 //
 //--------------------------------
 always @ (negedge clk) //(negedge clk or negedge cc_ctrl or negedge cc_out or negedge cc or negedge data_in or
 negedge hold)
 begin
 if(hold == 1'b1) begin
 cc <= cc;
 end
 else begin
 case(cc_ctrl)
 reset_cc : begin
 cc <= 8'b 11000000;
 end
 load_cc : begin
 cc <= cc_out;
 end
 pull_cc : begin
 cc <= data_in;
 end
 default : begin
 // when latch_cc =>
 cc <= cc;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // interrupt vector
 //
 //--------------------------------
 always @ (negedge clk) //(negedge clk or negedge iv_ctrl or negedge hold)
 begin
 if(hold == 1'b1) begin
 iv <= iv;
 end
 else begin
 case(iv_ctrl)
 reset_iv : begin
 iv <= 3'b 111;
 end
 nmi_iv : begin
 iv <= 3'b 110;
 end

cpu01alt.v Page 10

 swi_iv : begin
 iv <= 3'b 101;
 end
 irq_iv : begin
 iv <= 3'b 100;
 end
 icf_iv : begin
 iv <= 3'b 011;
 end
 ocf_iv : begin
 iv <= 3'b 010;
 end
 tof_iv : begin
 iv <= 3'b 001;
 end
 sci_iv : begin
 iv <= 3'b 000;
 end
 default : begin
 iv <= iv;
 end
 endcase
 end
 end
// endmodule

//------------------------------
//
// op code fetch
//
//--------------------------------

 always @ (negedge clk) //(negedge clk or negedge data_in or negedge op_ctrl or negedge op_code or negedge hold
)
 begin
 if(hold == 1'b1) begin
 op_code <= op_code;
 end
 else begin
 case(op_ctrl)
 reset_op : begin
 op_code <= 8'b 00000001;
 // nop
 end
 fetch_op : begin
 op_code <= data_in;
 end
 default : begin
 // when latch_op =>
 op_code <= op_code;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // Left Mux
 //
 //--------------------------------
 always @ (negedge clk) //(left_ctrl or acca or accb or xreg or sp or pc or ea or md)
 begin
 case(left_ctrl)
 acca_left : begin
 left[15:8] <= 8'b 00000000;
 left[7:0] <= acca;
 end
 accb_left : begin
 left[15:8] <= 8'b 00000000;
 left[7:0] <= accb;
 end
 accd_left : begin
 left[15:8] <= acca;
 left[7:0] <= accb;
 end
 ix_left : begin
 left <= xreg;
 end
 sp_left : begin
 left <= sp;
 end
 default : begin
 // when md_left =>
 left <= md;
 end
 endcase
 end
// endmodule

 //------------------------------

cpu01alt.v Page 11

 //
 // Right Mux
 //
 //--------------------------------
 always @ (negedge clk) //(right_ctrl or data_in or md or accb or ea)
 begin
 case(right_ctrl)
 zero_right : begin
 right <= 16'b0000000000000000;
 end
 plus_one_right : begin
 right <= 16'b0000000000000001;
 end
 accb_right : begin
 right <= {8'b 00000000,accb};
 end
 default : begin
 // when md_right =>
 right <= md;
 end
 endcase
 end
// endmodule

 //------------------------------
 //
 // Arithmetic Logic Unit
 //
 //--------------------------------
 always @ (negedge clk) //(alu_ctrl or cc or left or right or out_alu or cc_out)
 begin
 reg valid_lo;
 //boolean;
 reg valid_hi;
 //boolean;
 reg carry_in;
 reg [7:0] daa_reg;

 case(alu_ctrl)
 alu_adc,alu_sbc,alu_rol8,alu_ror8 : begin
 carry_in = cc[CBIT] ;
 end
 default : begin
 carry_in = 1'b0;
 end
 endcase
 // valid_lo := left(3 downto 0) <= 9;
 if((left[3:0] <= 9)) begin
 valid_lo = 1'b1;
 end
 else begin
 valid_lo = 1'b0;
 end
 // valid_hi := left(7 downto 4) <= 9;
 if((left[7:4] <= 9)) begin
 valid_hi = 1'b1;
 end
 else begin
 valid_hi = 1'b0;
 end
 if((cc[CBIT] == 1'b0)) begin
 if((cc[HBIT] == 1'b1)) begin
 if(valid_hi == 1'b1) begin
 daa_reg = 8'b 00000110;
 end
 else begin
 daa_reg = 8'b 01100110;
 end
 end
 else begin
 if(valid_lo == 1'b1) begin
 if(valid_hi == 1'b1) begin
 daa_reg = 8'b 00000000;
 end
 else begin
 daa_reg = 8'b 01100000;
 end
 end
 else begin
 if((left[7:4] <= 8)) begin
 daa_reg = 8'b 00000110;
 end
 else begin
 daa_reg = 8'b 01100110;
 end
 end
 end
 end
 else begin
 if((cc[HBIT] == 1'b1)) begin
 daa_reg = 8'b 01100110;

cpu01alt.v Page 12

 end
 else begin
 if(valid_lo == 1'b1) begin
 daa_reg = 8'b 01100000;
 end
 else begin
 daa_reg = 8'b 01100110;
 end
 end
 end
 case(alu_ctrl)
 alu_add8,alu_inc,alu_add16,alu_inx,alu_adc : begin
 out_alu <= left + right + ({15'b 000000000000000,carry_in});
 end
 alu_sub8,alu_dec,alu_sub16,alu_dex,alu_sbc : begin
 out_alu <= left - right - ({15'b 000000000000000,carry_in});
 end
 alu_and : begin
 out_alu <= left & right;
 // and/bit
 end
 alu_ora : begin
 out_alu <= left | right;
 // or
 end
 alu_eor : begin
 out_alu <= left ^ right;
 // eor/xor
 end
 alu_lsl16,alu_asl8,alu_rol8 : begin
 out_alu <= {left[14:0] ,carry_in};
 // rol8/asl8/lsl16
 end
 alu_lsr16,alu_lsr8 : begin
 out_alu <= {carry_in,left[15:1] };
 // lsr
 end
 alu_ror8 : begin
 out_alu <= {8'b 00000000,carry_in,left[7:1] };
 // ror
 end
 alu_asr8 : begin
 out_alu <= {8'b 00000000,left[7] ,left[7:1] };
 // asr
 end
 alu_neg : begin
 out_alu <= right - left;
 // neg (right=0)
 end
 alu_com : begin
 out_alu <= ~left;
 end
 alu_clr,alu_ld8,alu_ld16 : begin
 out_alu <= right;
 // clr, ld
 end
 alu_st8,alu_st16 : begin
 out_alu <= left;
 end
 alu_daa : begin
 out_alu <= left + ({8'b 00000000,daa_reg});
 end
 alu_tpa : begin
 out_alu <= {8'b 00000000,cc};
 end
 default : begin
 out_alu <= left;
 // nop
 end
 endcase
 //
 // carry bit
 //
 case(alu_ctrl)
 alu_add8,alu_adc : begin
 cc_out[CBIT] <= ((left[7] & right[7])) | ((left[7] & ~out_alu[7])) | ((right[7] & ~out_alu[7]));
 end
 alu_sub8,alu_sbc : begin
 cc_out[CBIT] <= ((((~left[7])) & right[7])) | ((((~left[7])) & out_alu[7])) | ((right[7] & out_alu
[7]));
 end
 alu_add16 : begin
 cc_out[CBIT] <= ((left[15] & right[15])) | ((left[15] & ~out_alu[15])) | ((right[15] & ~out_alu[15
]));
 end
 alu_sub16 : begin
 cc_out[CBIT] <= ((((~left[15])) & right[15])) | ((((~left[15])) & out_alu[15])) | ((right[15] & ou
t_alu[15]));
 end
 alu_ror8,alu_lsr16,alu_lsr8,alu_asr8 : begin
 cc_out[CBIT] <= left[0] ;

cpu01alt.v Page 13

 end
 alu_rol8,alu_asl8 : begin
 cc_out[CBIT] <= left[7] ;
 end
 alu_lsl16 : begin
 cc_out[CBIT] <= left[15] ;
 end
 alu_com : begin
 cc_out[CBIT] <= 1'b1;
 end
 alu_neg,alu_clr : begin
 cc_out[CBIT] <= out_alu[7] | out_alu[6] | out_alu[5] | out_alu[4] | out_alu[3] | out_alu[2] | out_a
lu[1] | out_alu[0] ;
 end
 alu_daa : begin
 if((daa_reg[7:4] == 4'b 0110)) begin
 cc_out[CBIT] <= 1'b1;
 end
 else begin
 cc_out[CBIT] <= 1'b0;
 end
 end
 alu_sec : begin
 cc_out[CBIT] <= 1'b1;
 end
 alu_clc : begin
 cc_out[CBIT] <= 1'b0;
 end
 alu_tap : begin
 cc_out[CBIT] <= left[CBIT] ;
 end
 default : begin
 cc_out[CBIT] <= cc[CBIT] ;
 end
 endcase
 //
 // Zero flag
 //
 case(alu_ctrl)
 alu_add8,alu_sub8,alu_adc,alu_sbc,alu_and,alu_ora,alu_eor,alu_inc,alu_dec,alu_neg,alu_com,alu_clr,alu_rol8,a
lu_ror8,alu_asr8,alu_asl8,alu_lsr8,alu_ld8,alu_st8 : begin
 cc_out[ZBIT] <= ~((out_alu[7] | out_alu[6] | out_alu[5] | out_alu[4] | out_alu[3] | out_alu[2] | o
ut_alu[1] | out_alu[0]));
 end
 alu_add16,alu_sub16,alu_lsl16,alu_lsr16,alu_inx,alu_dex,alu_ld16,alu_st16 : begin
 cc_out[ZBIT] <= ~((out_alu[15] | out_alu[14] | out_alu[13] | out_alu[12] | out_alu[11] | out_alu[10
] | out_alu[9] | out_alu[8] | out_alu[7] | out_alu[6] | out_alu[5] | out_alu[4] | out_alu[3] | out_alu[2
] | out_alu[1] | out_alu[0]));
 end
 alu_tap : begin
 cc_out[ZBIT] <= left[ZBIT] ;
 end
 default : begin
 cc_out[ZBIT] <= cc[ZBIT] ;
 end
 endcase
 //
 // negative flag
 //
 case(alu_ctrl)
 alu_add8,alu_sub8,alu_adc,alu_sbc,alu_and,alu_ora,alu_eor,alu_rol8,alu_ror8,alu_asr8,alu_asl8,alu_lsr8,alu_i
nc,alu_dec,alu_neg,alu_com,alu_clr,alu_ld8,alu_st8 : begin
 cc_out[NBIT] <= out_alu[7] ;
 end
 alu_add16,alu_sub16,alu_lsl16,alu_lsr16,alu_ld16,alu_st16 : begin
 cc_out[NBIT] <= out_alu[15] ;
 end
 alu_tap : begin
 cc_out[NBIT] <= left[NBIT] ;
 end
 default : begin
 cc_out[NBIT] <= cc[NBIT] ;
 end
 endcase
 //
 // Interrupt mask flag
 //
 case(alu_ctrl)
 alu_sei : begin
 cc_out[IBIT] <= 1'b1;
 // set interrupt mask
 end
 alu_cli : begin
 cc_out[IBIT] <= 1'b0;
 // clear interrupt mask
 end
 alu_tap : begin
 cc_out[IBIT] <= left[IBIT] ;
 end
 default : begin
 cc_out[IBIT] <= cc[IBIT] ;

cpu01alt.v Page 14

 // interrupt mask
 end
 endcase
 //
 // Half Carry flag
 //
 case(alu_ctrl)
 alu_add8,alu_adc : begin
 cc_out[HBIT] <= ((left[3] & right[3])) | ((right[3] & ~out_alu[3])) | ((left[3] & ~out_alu[3]));
 end
 alu_tap : begin
 cc_out[HBIT] <= left[HBIT] ;
 end
 default : begin
 cc_out[HBIT] <= cc[HBIT] ;
 end
 endcase
 //
 // Overflow flag
 //
 case(alu_ctrl)
 alu_add8,alu_adc : begin
 cc_out[VBIT] <= ((left[7] & right[7] & ((~out_alu[7])))) | ((((~left[7])) & ((~right[7])) & out_a
lu[7]));
 end
 alu_sub8,alu_sbc : begin
 cc_out[VBIT] <= ((left[7] & ((~right[7])) & ((~out_alu[7])))) | ((((~left[7])) & right[7] & out_a
lu[7]));
 end
 alu_add16 : begin
 cc_out[VBIT] <= ((left[15] & right[15] & ((~out_alu[15])))) | ((((~left[15])) & ((~right[15])) &
out_alu[15]));
 end
 alu_sub16 : begin
 cc_out[VBIT] <= ((left[15] & ((~right[15])) & ((~out_alu[15])))) | ((((~left[15])) & right[15] &
out_alu[15]));
 end
 alu_inc : begin
 cc_out[VBIT] <= (((~left[7])) & left[6] & left[5] & left[4] & left[3] & left[2] & left[1] & left[
0]);
 end
 alu_dec,alu_neg : begin
 cc_out[VBIT] <= (left[7] & ((~left[6])) & ((~left[5])) & ((~left[4])) & ((~left[3])) & ((~left[
2])) & ((~left[1])) & ((~left[0])));
 end
 alu_asr8 : begin
 cc_out[VBIT] <= left[0] ^ left[7] ;
 end
 alu_lsr8,alu_lsr16 : begin
 cc_out[VBIT] <= left[0] ;
 end
 alu_ror8 : begin
 cc_out[VBIT] <= left[0] ^ cc[CBIT] ;
 end
 alu_lsl16 : begin
 cc_out[VBIT] <= left[15] ^ left[14] ;
 end
 alu_rol8,alu_asl8 : begin
 cc_out[VBIT] <= left[7] ^ left[6] ;
 end
 alu_tap : begin
 cc_out[VBIT] <= left[VBIT] ;
 end
 alu_and,alu_ora,alu_eor,alu_com,alu_st8,alu_st16,alu_ld8,alu_ld16,alu_clv : begin
 cc_out[VBIT] <= 1'b0;
 end
 alu_sev : begin
 cc_out[VBIT] <= 1'b1;
 end
 default : begin
 cc_out[VBIT] <= cc[VBIT] ;
 end
 endcase
 case(alu_ctrl)
 alu_tap : begin
 cc_out[XBIT] <= cc[XBIT] & left[XBIT] ;
 cc_out[SBIT] <= left[SBIT] ;
 end
 default : begin
 cc_out[XBIT] <= cc[XBIT] & left[XBIT] ;
 cc_out[SBIT] <= cc[SBIT] ;
 end
 endcase
 test_alu <= out_alu;
 test_cc <= cc_out;
 end
// endmodule

 //------------------------------
 //
 // Detect Edge of NMI interrupt

cpu01alt.v Page 15

 //
 //----------------------------------
 always @ (negedge clk) //(negedge clk or negedge rst or negedge nmi or negedge nmi_ack)
 begin
 if(hold == 1'b1) begin
 nmi_req <= nmi_req;
 end
 else begin
 if(rst == 1'b1) begin
 nmi_req <= 1'b0;
 end
 else begin
 if((nmi == 1'b1) && (nmi_ack == 1'b0)) begin
 nmi_req <= 1'b1;
 end
 else begin
 if((nmi == 1'b0) && (nmi_ack == 1'b1)) begin
 nmi_req <= 1'b0;
 end
 else begin
 nmi_req <= nmi_req;
 end
 end
 end
 end
 end
// endmodule

 //------------------------------
 //
 // Nmi mux
 //
 //----------------------------------
 always @ (negedge clk) //(negedge clk or negedge nmi_ctrl or negedge nmi_ack or negedge hold)
 begin
 if(hold == 1'b1) begin
 nmi_ack <= nmi_ack;
 end
 else begin
 case(nmi_ctrl)
 set_nmi : begin
 nmi_ack <= 1'b1;
 end
 reset_nmi : begin
 nmi_ack <= 1'b0;
 end
 default : begin
 // when latch_nmi =>
 nmi_ack <= nmi_ack;
 end
 endcase
 end
 end
// endmodule

 //------------------------------
 //
 // state sequencer
 //
 //----------------------------------
 always @ (negedge clk) //(state or op_code or cc or ea or irq or irq_icf or irq_ocf or irq_tof or irq_sci or n
mi_req or nmi_ack or hold or halt)
 begin
 case(state)
 reset_state : begin
 // released from reset
 // reset the registers
 op_ctrl <= reset_op;
 acca_ctrl <= reset_acca;
 accb_ctrl <= reset_accb;
 ix_ctrl <= reset_ix;
 sp_ctrl <= reset_sp;
 pc_ctrl <= reset_pc;
 ea_ctrl <= reset_ea;
 md_ctrl <= reset_md;
 iv_ctrl <= reset_iv;
 nmi_ctrl <= reset_nmi;
 // idle the ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= reset_cc;
 // idle the bus
 dout_ctrl <= md_lo_dout;
 addr_ctrl <= idle_ad;
 next_state <= vect_hi_state;
 //
 // Jump via interrupt vector
 // iv holds interrupt type
 // fetch PC hi from vector location
 //

cpu01alt.v Page 16

 end
 vect_hi_state : begin
 // default the registers
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 md_ctrl <= latch_md;
 ea_ctrl <= latch_ea;
 iv_ctrl <= latch_iv;
 // idle the ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // fetch pc low interrupt vector
 pc_ctrl <= pull_hi_pc;
 addr_ctrl <= int_hi_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= vect_lo_state;
 //
 // jump via interrupt vector
 // iv holds vector type
 // fetch PC lo from vector location
 //
 end
 vect_lo_state : begin
 // default the registers
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 md_ctrl <= latch_md;
 ea_ctrl <= latch_ea;
 iv_ctrl <= latch_iv;
 // idle the ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // fetch the vector low byte
 pc_ctrl <= pull_lo_pc;
 addr_ctrl <= int_lo_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= fetch_state;
 //
 // Here to fetch an instruction
 // PC points to opcode
 // Should service interrupt requests at this point
 // either from the timer
 // or from the external input.
 //
 // branch conditional
 // acca single op
 // accb single op
 // indexed single op
 // extended single op
 // idle ALU
 end
 fetch_state : begin
 case(op_code[7:4])
 4'b 0000,4'b 0001,4'b 0010,4'b 0011,4'b 0100,4'b 0101,4'b 0110,4'b 0111 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // acca immediate
 // acca direct
 // acca indexed
 // acca extended
 end
 4'b 1000,4'b 1001,4'b 1010,4'b 1011 : begin
 case(op_code[3:0])
 4'b 0000 : begin
 // suba
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;

cpu01alt.v Page 17

 end
 4'b 0001 : begin
 // cmpa
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0010 : begin
 // sbca
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sbc;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0011 : begin
 // subd
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0100 : begin
 // anda
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_and;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0101 : begin
 // bita
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_and;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0110 : begin
 // ldaa
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ld8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0111 : begin
 // staa
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1000 : begin
 // eora
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_eor;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1001 : begin
 // adca

cpu01alt.v Page 18

 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_adc;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1010 : begin
 // oraa
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ora;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1011 : begin
 // adda
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1100 : begin
 // cpx
 left_ctrl <= ix_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1101 : begin
 // bsr / jsr
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1110 : begin
 // lds
 left_ctrl <= sp_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ld16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 end
 4'b 1111 : begin
 // sts
 left_ctrl <= sp_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 endcase
 // accb immediate
 // accb direct
 // accb indexed
 // accb extended
 end

cpu01alt.v Page 19

 4'b 1100,4'b 1101,4'b 1110,4'b 1111 : begin
 case(op_code[3:0])
 4'b 0000 : begin
 // subb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0001 : begin
 // cmpb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0010 : begin
 // sbcb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_sbc;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0011 : begin
 // addd
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0100 : begin
 // andb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_and;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0101 : begin
 // bitb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_and;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0110 : begin
 // ldab
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ld8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 0111 : begin
 // stab
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1000 : begin

cpu01alt.v Page 20

 // eorb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_eor;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1001 : begin
 // adcb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_adc;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1010 : begin
 // orab
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ora;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1011 : begin
 // addb
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1100 : begin
 // ldd
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ld16;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1101 : begin
 // std
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1110 : begin
 // ldx
 left_ctrl <= ix_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_ld16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= load_ix;
 sp_ctrl <= latch_sp;
 end
 4'b 1111 : begin
 // stx
 left_ctrl <= ix_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 default : begin
 left_ctrl <= accb_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_nop;

cpu01alt.v Page 21

 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 endcase
 end
 default : begin
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 end
 endcase
 md_ctrl <= latch_md;
 // fetch the op code
 op_ctrl <= fetch_op;
 ea_ctrl <= reset_ea;
 addr_ctrl <= fetch_ad;
 dout_ctrl <= md_lo_dout;
 iv_ctrl <= latch_iv;
 if(halt == 1'b1) begin
 pc_ctrl <= latch_pc;
 nmi_ctrl <= latch_nmi;
 next_state <= halt_state;
 // service non maskable interrupts
 end
 else if((nmi_req == 1'b1) && (nmi_ack == 1'b0)) begin
 pc_ctrl <= latch_pc;
 nmi_ctrl <= set_nmi;
 next_state <= int_pcl_state;
 // service maskable interrupts
 end
 else begin
 //
 // nmi request is not cleared until nmi input goes low
 //
 if((nmi_req == 1'b0) && (nmi_ack == 1'b1)) begin
 nmi_ctrl <= reset_nmi;
 end
 else begin
 nmi_ctrl <= latch_nmi;
 end
 //
 // IRQ is level sensitive
 //
 if(((irq == 1'b1) || (irq_icf == 1'b1) || (irq_ocf == 1'b1) || (irq_tof == 1'b1) || (irq_sci == 1'b1)) &
& (cc[IBIT] == 1'b0)) begin
 pc_ctrl <= latch_pc;
 next_state <= int_pcl_state;
 end
 else begin
 // Advance the PC to fetch next instruction byte
 pc_ctrl <= inc_pc;
 next_state <= decode_state;
 end
 end
 //
 // Here to decode instruction
 // and fetch next byte of intruction
 // whether it be necessary or not
 //
 end
 decode_state : begin
 // fetch first byte of address or immediate data
 ea_ctrl <= fetch_first_ea;
 addr_ctrl <= fetch_ad;
 dout_ctrl <= md_lo_dout;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 iv_ctrl <= latch_iv;
 case(op_code[7:4])
 4'b 0000 : begin
 md_ctrl <= fetch_first_md;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 case(op_code[3:0])
 4'b 0001 : begin
 // nop
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;

cpu01alt.v Page 22

 end
 4'b 0100 : begin
 // lsrd
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_lsr16;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 0101 : begin
 // lsld
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_lsl16;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 0110 : begin
 // tap
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_tap;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 0111 : begin
 // tpa
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_tpa;
 cc_ctrl <= latch_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 1000 : begin
 // inx
 left_ctrl <= ix_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_inx;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= load_ix;
 end
 4'b 1001 : begin
 // dex
 left_ctrl <= ix_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_dex;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= load_ix;
 end
 4'b 1010 : begin
 // clv
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_clv;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 1011 : begin
 // sev
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_sev;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 1100 : begin
 // clc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_clc;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end

cpu01alt.v Page 23

 4'b 1101 : begin
 // sec
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_sec;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 1110 : begin
 // cli
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_cli;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 4'b 1111 : begin
 // sei
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_sei;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 end
 endcase
 next_state <= fetch_state;
 // acca / accb inherent instructions
 end
 4'b 0001 : begin
 md_ctrl <= fetch_first_md;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 left_ctrl <= acca_left;
 right_ctrl <= accb_right;
 case(op_code[3:0])
 4'b 0000 : begin
 // sba
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 end
 4'b 0001 : begin
 // cba
 alu_ctrl <= alu_sub8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 4'b 0110 : begin
 // tab
 alu_ctrl <= alu_st8;
 cc_ctrl <= load_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= load_accb;
 end
 4'b 0111 : begin
 // tba
 alu_ctrl <= alu_ld8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 end
 4'b 1001 : begin
 // daa
 alu_ctrl <= alu_daa;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;
 accb_ctrl <= latch_accb;
 end
 4'b 1011 : begin
 // aba
 alu_ctrl <= alu_add8;
 cc_ctrl <= load_cc;
 acca_ctrl <= load_acca;

cpu01alt.v Page 24

 accb_ctrl <= latch_accb;
 end
 default : begin
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 endcase
 next_state <= fetch_state;
 end
 4'b 0010 : begin
 // branch conditional
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // increment the pc
 pc_ctrl <= inc_pc;
 case(op_code[3:0])
 4'b 0000 : begin
 // bra
 next_state <= branch_state;
 end
 4'b 0001 : begin
 // brn
 next_state <= fetch_state;
 end
 4'b 0010 : begin
 // bhi
 if(((cc[CBIT] | cc[ZBIT])) == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 0011 : begin
 // bls
 if(((cc[CBIT] | cc[ZBIT])) == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 0100 : begin
 // bcc/bhs
 if(cc[CBIT] == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 0101 : begin
 // bcs/blo
 if(cc[CBIT] == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 0110 : begin
 // bne
 if(cc[ZBIT] == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 0111 : begin
 // beq
 if(cc[ZBIT] == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1000 : begin
 // bvc
 if(cc[VBIT] == 1'b0) begin
 next_state <= branch_state;

cpu01alt.v Page 25

 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1001 : begin
 // bvs
 if(cc[VBIT] == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1010 : begin
 // bpl
 if(cc[NBIT] == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1011 : begin
 // bmi
 if(cc[NBIT] == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1100 : begin
 // bge
 if(((cc[NBIT] ^ cc[VBIT])) == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1101 : begin
 // blt
 if(((cc[NBIT] ^ cc[VBIT])) == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1110 : begin
 // bgt
 if(((cc[ZBIT] | ((cc[NBIT] ^ cc[VBIT])))) == 1'b0) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 4'b 1111 : begin
 // ble
 if(((cc[ZBIT] | ((cc[NBIT] ^ cc[VBIT])))) == 1'b1) begin
 next_state <= branch_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 default : begin
 next_state <= fetch_state;
 end
 endcase
 //
 // Single byte stack operators
 // Do not advance PC
 //
 end
 4'b 0011 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 case(op_code[3:0])
 4'b 0000 : begin
 // tsx
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= load_ix;
 sp_ctrl <= latch_sp;

cpu01alt.v Page 26

 next_state <= fetch_state;
 end
 4'b 0001 : begin
 // ins
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= fetch_state;
 end
 4'b 0010 : begin
 // pula
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= pula_state;
 end
 4'b 0011 : begin
 // pulb
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= pulb_state;
 end
 4'b 0100 : begin
 // des
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= fetch_state;
 end
 4'b 0101 : begin
 // txs
 left_ctrl <= ix_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= fetch_state;
 end
 4'b 0110 : begin
 // psha
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= psha_state;
 end
 4'b 0111 : begin
 // pshb
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= pshb_state;
 end
 4'b 1000 : begin
 // pulx
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= pulx_hi_state;
 end
 4'b 1001 : begin
 // rts
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;

cpu01alt.v Page 27

 next_state <= rts_hi_state;
 end
 4'b 1010 : begin
 // abx
 left_ctrl <= ix_left;
 right_ctrl <= accb_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= load_ix;
 sp_ctrl <= latch_sp;
 next_state <= fetch_state;
 end
 4'b 1011 : begin
 // rti
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= load_sp;
 next_state <= rti_cc_state;
 end
 4'b 1100 : begin
 // pshx
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= pshx_lo_state;
 end
 4'b 1101 : begin
 // mul
 left_ctrl <= acca_left;
 right_ctrl <= accb_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= mul_state;
 end
 4'b 1110 : begin
 // wai
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= int_pcl_state;
 end
 4'b 1111 : begin
 // swi
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= int_pcl_state;
 end
 default : begin
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 next_state <= fetch_state;
 end
 endcase
 //
 // Accumulator A Single operand
 // source = Acc A dest = Acc A
 // Do not advance PC
 //
 end
 4'b 0100 : begin
 // acca single op
 md_ctrl <= fetch_first_md;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 left_ctrl <= acca_left;
 case(op_code[3:0])
 4'b 0000 : begin
 // neg
 right_ctrl <= zero_right;
 alu_ctrl <= alu_neg;

cpu01alt.v Page 28

 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 0011 : begin
 // com
 right_ctrl <= zero_right;
 alu_ctrl <= alu_com;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 0100 : begin
 // lsr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_lsr8;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 0110 : begin
 // ror
 right_ctrl <= zero_right;
 alu_ctrl <= alu_ror8;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 0111 : begin
 // asr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asr8;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1000 : begin
 // asl
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asl8;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1001 : begin
 // rol
 right_ctrl <= zero_right;
 alu_ctrl <= alu_rol8;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1010 : begin
 // dec
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_dec;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1011 : begin
 // undefined
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 acca_ctrl <= latch_acca;
 cc_ctrl <= latch_cc;
 end
 4'b 1100 : begin
 // inc
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_inc;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1101 : begin
 // tst
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 acca_ctrl <= latch_acca;
 cc_ctrl <= load_cc;
 end
 4'b 1110 : begin
 // jmp
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 acca_ctrl <= latch_acca;
 cc_ctrl <= latch_cc;
 end
 4'b 1111 : begin
 // clr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_clr;
 acca_ctrl <= load_acca;
 cc_ctrl <= load_cc;
 end
 default : begin
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 acca_ctrl <= latch_acca;

cpu01alt.v Page 29

 cc_ctrl <= latch_cc;
 end
 endcase
 next_state <= fetch_state;
 //
 // single operand acc b
 // Do not advance PC
 //
 end
 4'b 0101 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 pc_ctrl <= latch_pc;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 left_ctrl <= accb_left;
 case(op_code[3:0])
 4'b 0000 : begin
 // neg
 right_ctrl <= zero_right;
 alu_ctrl <= alu_neg;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 0011 : begin
 // com
 right_ctrl <= zero_right;
 alu_ctrl <= alu_com;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 0100 : begin
 // lsr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_lsr8;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 0110 : begin
 // ror
 right_ctrl <= zero_right;
 alu_ctrl <= alu_ror8;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 0111 : begin
 // asr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asr8;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1000 : begin
 // asl
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asl8;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1001 : begin
 // rol
 right_ctrl <= zero_right;
 alu_ctrl <= alu_rol8;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1010 : begin
 // dec
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_dec;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1011 : begin
 // undefined
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 accb_ctrl <= latch_accb;
 cc_ctrl <= latch_cc;
 end
 4'b 1100 : begin
 // inc
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_inc;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1101 : begin
 // tst
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;

cpu01alt.v Page 30

 accb_ctrl <= latch_accb;
 cc_ctrl <= load_cc;
 end
 4'b 1110 : begin
 // jmp
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 accb_ctrl <= latch_accb;
 cc_ctrl <= latch_cc;
 end
 4'b 1111 : begin
 // clr
 right_ctrl <= zero_right;
 alu_ctrl <= alu_clr;
 accb_ctrl <= load_accb;
 cc_ctrl <= load_cc;
 end
 default : begin
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 accb_ctrl <= latch_accb;
 cc_ctrl <= latch_cc;
 end
 endcase
 next_state <= fetch_state;
 //
 // Single operand indexed
 // Two byte instruction so advance PC
 // EA should hold index offset
 //
 end
 4'b 0110 : begin
 // indexed single op
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= indexed_state;
 //
 // Single operand extended addressing
 // three byte instruction so advance the PC
 // Low order EA holds high order address
 //
 end
 4'b 0111 : begin
 // extended single op
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= extended_state;
 end
 4'b 1000 : begin
 // acca immediate
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 // subdd #
 // cpx #
 // lds #
 // bsr
 case(op_code[3:0])
 4'b 0011,4'b 1100,4'b 1110 : begin
 next_state <= immediate16_state;
 end
 4'b 1101 : begin
 next_state <= bsr_state;
 end
 default : begin

cpu01alt.v Page 31

 next_state <= fetch_state;
 end
 endcase
 // acca direct
 end
 4'b 1001 : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 pc_ctrl <= inc_pc;
 // staa direct
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 // sts direct
 end
 4'b 1111 : begin
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 // jsr direct
 end
 4'b 1101 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 next_state <= jsr_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 next_state <= read8_state;
 end
 endcase
 // acca indexed
 end
 4'b 1010 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= indexed_state;
 // acca extended
 end
 4'b 1011 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= extended_state;
 // accb immediate
 end
 4'b 1100 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;

cpu01alt.v Page 32

 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 // addd #
 // ldd #
 // ldx #
 case(op_code[3:0])
 4'b 0011,4'b 1100,4'b 1110 : begin
 next_state <= immediate16_state;
 end
 default : begin
 next_state <= fetch_state;
 end
 endcase
 // accb direct
 end
 4'b 1101 : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 pc_ctrl <= inc_pc;
 // stab direct
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= accb_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 // std direct
 end
 4'b 1101 : begin
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 // stx direct
 end
 4'b 1111 : begin
 left_ctrl <= ix_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 next_state <= read8_state;
 end
 endcase
 // accb indexed
 end
 4'b 1110 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= indexed_state;
 // accb extended
 end
 4'b 1111 : begin
 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // increment the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 next_state <= extended_state;
 end
 default : begin

cpu01alt.v Page 33

 md_ctrl <= fetch_first_md;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 // idle the pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= latch_pc;
 next_state <= fetch_state;
 end
 endcase
 end
 immediate16_state : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 op_ctrl <= latch_op;
 iv_ctrl <= latch_iv;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment pc
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= inc_pc;
 // fetch next immediate byte
 md_ctrl <= fetch_next_md;
 addr_ctrl <= fetch_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 //
 // ea holds 8 bit index offet
 // calculate the effective memory address
 // using the alu
 //
 end
 indexed_state : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 // calculate effective address from index reg
 // index offest is not sign extended
 ea_ctrl <= add_ix_ea;
 // idle the bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 // work out next state
 // single op indexed
 case(op_code[7:4])
 4'b 0110 : begin
 md_ctrl <= latch_md;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // undefined
 // jmp
 // acca indexed
 case(op_code[3:0])
 4'b 1011 : begin
 next_state <= fetch_state;
 end
 4'b 1110 : begin
 next_state <= jmp_state;
 end
 default : begin
 next_state <= read8_state;
 end
 endcase
 // staa
 // jsr
 // sts
 end
 4'b 1010 : begin
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;

cpu01alt.v Page 34

 next_state <= write8_state;
 end
 4'b 1101 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= jsr_state;
 end
 4'b 1111 : begin
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= read8_state;
 end
 endcase
 // accb indexed
 // stab direct
 // std direct
 // stx direct
 end
 4'b 1110 : begin
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= accb_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1101 : begin
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 4'b 1111 : begin
 left_ctrl <= ix_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= read8_state;
 end
 endcase
 end
 default : begin
 md_ctrl <= latch_md;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 next_state <= fetch_state;
 end
 endcase
 //
 // ea holds the low byte of the absolute address
 // Move ea low byte into ea high byte
 // load new ea low byte to for absolute 16 bit address
 // advance the program counter
 //
 end
 extended_state : begin
 // fetch ea low byte
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 iv_ctrl <= latch_iv;

cpu01alt.v Page 35

 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 // increment pc
 pc_ctrl <= inc_pc;
 // fetch next effective address bytes
 ea_ctrl <= fetch_next_ea;
 addr_ctrl <= fetch_ad;
 dout_ctrl <= md_lo_dout;
 // work out the next state
 // single op extended
 // undefined
 // jmp
 case(op_code[7:4])
 4'b 0111 : begin
 md_ctrl <= latch_md;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 case(op_code[3:0])
 4'b 1011 : begin
 next_state <= fetch_state;
 end
 4'b 1110 : begin
 next_state <= jmp_state;
 end
 default : begin
 next_state <= read8_state;
 end
 endcase
 // acca extended
 // staa
 // jsr
 // sts
 end
 4'b 1011 : begin
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1101 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= jsr_state;
 end
 4'b 1111 : begin
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= read8_state;
 end
 endcase
 // accb extended
 // stab
 // std
 // stx
 end
 4'b 1111 : begin
 case(op_code[3:0])
 4'b 0111 : begin
 left_ctrl <= accb_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1101 : begin
 left_ctrl <= accd_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;

cpu01alt.v Page 36

 next_state <= write16_state;
 end
 4'b 1111 : begin
 left_ctrl <= ix_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 next_state <= write16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= read8_state;
 end
 endcase
 end
 default : begin
 md_ctrl <= latch_md;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 next_state <= fetch_state;
 end
 endcase
 //
 // here if ea holds low byte (direct page)
 // can enter here from extended addressing
 // read memory location
 // note that reads may be 8 or 16 bits
 //
 end
 read8_state : begin
 // read data
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 //
 addr_ctrl <= read_ad;
 dout_ctrl <= md_lo_dout;
 // single operand
 // acca
 case(op_code[7:4])
 4'b 0110,4'b 0111 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 ea_ctrl <= latch_ea;
 next_state <= execute_state;
 // subd
 // lds
 // cpx
 end
 4'b 1001,4'b 1010,4'b 1011 : begin
 case(op_code[3:0])
 4'b 0011,4'b 1110,4'b 1100 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 // increment the effective address in case of 16 bit load
 ea_ctrl <= inc_ea;
 next_state <= read16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 ea_ctrl <= latch_ea;
 next_state <= fetch_state;
 end
 endcase
 // accb
 // addd
 // ldd
 // ldx
 end

cpu01alt.v Page 37

 4'b 1101,4'b 1110,4'b 1111 : begin
 case(op_code[3:0])
 4'b 0011,4'b 1100,4'b 1110 : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 // increment the effective address in case of 16 bit load
 ea_ctrl <= inc_ea;
 next_state <= read16_state;
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 ea_ctrl <= latch_ea;
 next_state <= execute_state;
 end
 endcase
 end
 default : begin
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= fetch_first_md;
 ea_ctrl <= latch_ea;
 next_state <= fetch_state;
 end
 endcase
 // read second data byte from ea
 // default
 end
 read16_state : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // idle the effective address
 ea_ctrl <= latch_ea;
 // read the low byte of the 16 bit data
 md_ctrl <= fetch_next_md;
 addr_ctrl <= read_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 //
 // 16 bit Write state
 // write high byte of ALU output.
 // EA hold address of memory to write to
 // Advance the effective address in ALU
 //
 end
 write16_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 // increment the effective address
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 ea_ctrl <= inc_ea;
 // write the ALU hi byte to ea
 addr_ctrl <= write_ad;
 dout_ctrl <= md_hi_dout;
 next_state <= write8_state;
 //
 // 8 bit write
 // Write low 8 bits of ALU output
 //
 end
 write8_state : begin
 // default registers

cpu01alt.v Page 38

 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle the ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // write ALU low byte output
 addr_ctrl <= write_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 end
 jmp_state : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // load PC with effective address
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= load_ea_pc;
 // idle the bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 end
 jsr_state : begin
 // JSR
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc low
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= jsr1_state;
 end
 jsr1_state : begin
 // JSR
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc hi
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= jmp_state;
 end
 branch_state : begin
 // Bcc
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;

cpu01alt.v Page 39

 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // calculate signed branch
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 pc_ctrl <= add_ea_pc;
 // idle the bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 end
 bsr_state : begin
 // BSR
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc low
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= bsr1_state;
 end
 bsr1_state : begin
 // BSR
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc hi
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= branch_state;
 end
 rts_hi_state : begin
 // RTS
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment the sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // read pc hi
 pc_ctrl <= pull_hi_pc;
 addr_ctrl <= pull_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= rts_lo_state;
 end
 rts_lo_state : begin
 // RTS1
 // default

cpu01alt.v Page 40

 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle the ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // read pc low
 pc_ctrl <= pull_lo_pc;
 addr_ctrl <= pull_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= fetch_state;
 end
 mul_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // move acca to md
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st16;
 cc_ctrl <= latch_cc;
 md_ctrl <= load_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mulea_state;
 end
 mulea_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 md_ctrl <= latch_md;
 // idle ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // move accb to ea
 ea_ctrl <= load_accb_ea;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= muld_state;
 end
 muld_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 md_ctrl <= latch_md;
 // clear accd
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_ld8;
 cc_ctrl <= latch_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul0_state;
 end
 mul0_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;

cpu01alt.v Page 41

 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 0 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[0] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul1_state;
 end
 mul1_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 1 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[1] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul2_state;
 end
 mul2_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 2 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[2] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul3_state;
 end
 mul3_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;

cpu01alt.v Page 42

 ea_ctrl <= latch_ea;
 // if bit 3 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[3] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul4_state;
 end
 mul4_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 4 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[4] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul5_state;
 end
 mul5_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 5 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[5] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul6_state;
 end
 mul6_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 6 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;

cpu01alt.v Page 43

 alu_ctrl <= alu_add16;
 if(ea[6] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= mul7_state;
 end
 mul7_state : begin
 // default
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // if bit 7 of ea set, add accd to md
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_add16;
 if(ea[7] == 1'b1) begin
 cc_ctrl <= load_cc;
 acca_ctrl <= load_hi_acca;
 accb_ctrl <= load_accb;
 end
 else begin
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 end
 md_ctrl <= shiftl_md;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 end
 execute_state : begin
 // execute single operand instruction
 // default
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 // indexed single op
 // extended single op
 case(op_code[7:4])
 4'b 0110,4'b 0111 : begin
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 iv_ctrl <= latch_iv;
 ea_ctrl <= latch_ea;
 // idle the bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 case(op_code[3:0])
 4'b 0000 : begin
 // neg
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_neg;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 0011 : begin
 // com
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_com;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 0100 : begin
 // lsr
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_lsr8;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;

cpu01alt.v Page 44

 next_state <= write8_state;
 end
 4'b 0110 : begin
 // ror
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_ror8;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 0111 : begin
 // asr
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asr8;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1000 : begin
 // asl
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_asl8;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1001 : begin
 // rol
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_rol8;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1010 : begin
 // dec
 left_ctrl <= md_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_dec;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1011 : begin
 // undefined
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= fetch_state;
 end
 4'b 1100 : begin
 // inc
 left_ctrl <= md_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_inc;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;
 end
 4'b 1101 : begin
 // tst
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_st8;
 cc_ctrl <= load_cc;
 md_ctrl <= latch_md;
 next_state <= fetch_state;
 end
 4'b 1110 : begin
 // jmp
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= fetch_state;
 end
 4'b 1111 : begin
 // clr
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_clr;
 cc_ctrl <= load_cc;
 md_ctrl <= load_md;
 next_state <= write8_state;

cpu01alt.v Page 45

 end
 default : begin
 left_ctrl <= md_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 md_ctrl <= latch_md;
 next_state <= fetch_state;
 end
 endcase
 end
 default : begin
 left_ctrl <= accd_left;
 right_ctrl <= md_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 ea_ctrl <= latch_ea;
 // idle the bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= fetch_state;
 end
 endcase
 end
 psha_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write acca
 addr_ctrl <= push_ad;
 dout_ctrl <= acca_dout;
 next_state <= fetch_state;
 end
 pula_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle sp
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 sp_ctrl <= latch_sp;
 // read acca
 acca_ctrl <= pull_acca;
 addr_ctrl <= pull_ad;
 dout_ctrl <= acca_dout;
 next_state <= fetch_state;
 end
 pshb_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;

cpu01alt.v Page 46

 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write accb
 addr_ctrl <= push_ad;
 dout_ctrl <= accb_dout;
 next_state <= fetch_state;
 end
 pulb_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle sp
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 sp_ctrl <= latch_sp;
 // read accb
 accb_ctrl <= pull_accb;
 addr_ctrl <= pull_ad;
 dout_ctrl <= accb_dout;
 next_state <= fetch_state;
 end
 pshx_lo_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write ix low
 addr_ctrl <= push_ad;
 dout_ctrl <= ix_lo_dout;
 next_state <= pshx_hi_state;
 end
 pshx_hi_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write ix hi
 addr_ctrl <= push_ad;
 dout_ctrl <= ix_hi_dout;
 next_state <= fetch_state;
 end
 pulx_hi_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;

cpu01alt.v Page 47

 // pull ix hi
 ix_ctrl <= pull_hi_ix;
 addr_ctrl <= pull_ad;
 dout_ctrl <= ix_hi_dout;
 next_state <= pulx_lo_state;
 end
 pulx_lo_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle sp
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 sp_ctrl <= latch_sp;
 // read ix low
 ix_ctrl <= pull_lo_ix;
 addr_ctrl <= pull_ad;
 dout_ctrl <= ix_lo_dout;
 next_state <= fetch_state;
 //
 // return from interrupt
 // enter here from bogus interrupts
 //
 end
 rti_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 sp_ctrl <= load_sp;
 // idle address bus
 cc_ctrl <= latch_cc;
 addr_ctrl <= idle_ad;
 dout_ctrl <= cc_dout;
 next_state <= rti_cc_state;
 end
 rti_cc_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 sp_ctrl <= load_sp;
 // read cc
 cc_ctrl <= pull_cc;
 addr_ctrl <= pull_ad;
 dout_ctrl <= cc_dout;
 next_state <= rti_accb_state;
 end
 rti_accb_state : begin
 // default registers
 acca_ctrl <= latch_acca;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;

cpu01alt.v Page 48

 sp_ctrl <= load_sp;
 // read accb
 accb_ctrl <= pull_accb;
 addr_ctrl <= pull_ad;
 dout_ctrl <= accb_dout;
 next_state <= rti_acca_state;
 end
 rti_acca_state : begin
 // default registers
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // read acca
 acca_ctrl <= pull_acca;
 addr_ctrl <= pull_ad;
 dout_ctrl <= acca_dout;
 next_state <= rti_ixh_state;
 end
 rti_ixh_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // read ix hi
 ix_ctrl <= pull_hi_ix;
 addr_ctrl <= pull_ad;
 dout_ctrl <= ix_hi_dout;
 next_state <= rti_ixl_state;
 end
 rti_ixl_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // read ix low
 ix_ctrl <= pull_lo_ix;
 addr_ctrl <= pull_ad;
 dout_ctrl <= ix_lo_dout;
 next_state <= rti_pch_state;
 end
 rti_pch_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // increment sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_add16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // pull pc hi

cpu01alt.v Page 49

 pc_ctrl <= pull_hi_pc;
 addr_ctrl <= pull_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= rti_pcl_state;
 end
 rti_pcl_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // idle sp
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 sp_ctrl <= latch_sp;
 // pull pc low
 pc_ctrl <= pull_lo_pc;
 addr_ctrl <= pull_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= fetch_state;
 //
 // here on interrupt
 // iv register hold interrupt type
 //
 end
 int_pcl_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc low
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_lo_dout;
 next_state <= int_pch_state;
 end
 int_pch_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write pc hi
 addr_ctrl <= push_ad;
 dout_ctrl <= pc_hi_dout;
 next_state <= int_ixl_state;
 end
 int_ixl_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;

cpu01alt.v Page 50

 sp_ctrl <= load_sp;
 // write ix low
 addr_ctrl <= push_ad;
 dout_ctrl <= ix_lo_dout;
 next_state <= int_ixh_state;
 end
 int_ixh_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write ix hi
 addr_ctrl <= push_ad;
 dout_ctrl <= ix_hi_dout;
 next_state <= int_acca_state;
 end
 int_acca_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write acca
 addr_ctrl <= push_ad;
 dout_ctrl <= acca_dout;
 next_state <= int_accb_state;
 end
 int_accb_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write accb
 addr_ctrl <= push_ad;
 dout_ctrl <= accb_dout;
 next_state <= int_cc_state;
 end
 int_cc_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // decrement sp
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_sub16;
 cc_ctrl <= latch_cc;
 sp_ctrl <= load_sp;
 // write cc
 addr_ctrl <= push_ad;
 dout_ctrl <= cc_dout;

cpu01alt.v Page 51

 nmi_ctrl <= latch_nmi;
 //
 // nmi is edge triggered
 // nmi_req is cleared when nmi goes low.
 //
 if(nmi_req == 1'b1) begin
 iv_ctrl <= nmi_iv;
 next_state <= vect_hi_state;
 end
 else begin
 //
 // IRQ is level sensitive
 //
 if((irq == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= irq_iv;
 next_state <= int_mask_state;
 end
 else if((irq_icf == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= icf_iv;
 next_state <= int_mask_state;
 end
 else if((irq_ocf == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= ocf_iv;
 next_state <= int_mask_state;
 end
 else if((irq_tof == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= tof_iv;
 next_state <= int_mask_state;
 end
 else if((irq_sci == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= sci_iv;
 next_state <= int_mask_state;
 end
 else begin
 case(op_code)
 8'b 00111110 : begin
 // WAI (wait for interrupt)
 iv_ctrl <= latch_iv;
 next_state <= int_wai_state;
 end
 8'b 00111111 : begin
 // SWI (Software interrupt)
 iv_ctrl <= swi_iv;
 next_state <= vect_hi_state;
 end
 default : begin
 // bogus interrupt (return)
 iv_ctrl <= latch_iv;
 next_state <= rti_state;
 end
 endcase
 end
 end
 end
 int_wai_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 op_ctrl <= latch_op;
 ea_ctrl <= latch_ea;
 // enable interrupts
 left_ctrl <= sp_left;
 right_ctrl <= plus_one_right;
 alu_ctrl <= alu_cli;
 cc_ctrl <= load_cc;
 sp_ctrl <= latch_sp;
 // idle bus
 addr_ctrl <= idle_ad;
 dout_ctrl <= cc_dout;
 if((nmi_req == 1'b1) && (nmi_ack == 1'b0)) begin
 iv_ctrl <= nmi_iv;
 nmi_ctrl <= set_nmi;
 next_state <= vect_hi_state;
 end
 else begin
 //
 // nmi request is not cleared until nmi input goes low
 //
 if((nmi_req == 1'b0) && (nmi_ack == 1'b1)) begin
 nmi_ctrl <= reset_nmi;
 end
 else begin
 nmi_ctrl <= latch_nmi;
 end
 //
 // IRQ is level sensitive
 //
 if((irq == 1'b1) && (cc[IBIT] == 1'b0)) begin

cpu01alt.v Page 52

 iv_ctrl <= irq_iv;
 next_state <= int_mask_state;
 end
 else if((irq_icf == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= icf_iv;
 next_state <= int_mask_state;
 end
 else if((irq_ocf == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= ocf_iv;
 next_state <= int_mask_state;
 end
 else if((irq_tof == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= tof_iv;
 next_state <= int_mask_state;
 end
 else if((irq_sci == 1'b1) && (cc[IBIT] == 1'b0)) begin
 iv_ctrl <= sci_iv;
 next_state <= int_mask_state;
 end
 else begin
 iv_ctrl <= latch_iv;
 next_state <= int_wai_state;
 end
 end
 end
 int_mask_state : begin
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // Mask IRQ
 left_ctrl <= sp_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_sei;
 cc_ctrl <= load_cc;
 sp_ctrl <= latch_sp;
 // idle bus cycle
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= vect_hi_state;
 end
 halt_state : begin
 // halt CPU.
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // do nothing in ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;
 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // idle bus cycle
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 if(halt == 1'b1) begin
 next_state <= halt_state;
 end
 else begin
 next_state <= fetch_state;
 end
 end
 default : begin
 // error state halt on undefine states
 // default
 acca_ctrl <= latch_acca;
 accb_ctrl <= latch_accb;
 ix_ctrl <= latch_ix;
 sp_ctrl <= latch_sp;
 pc_ctrl <= latch_pc;
 md_ctrl <= latch_md;
 iv_ctrl <= latch_iv;
 op_ctrl <= latch_op;
 nmi_ctrl <= latch_nmi;
 ea_ctrl <= latch_ea;
 // do nothing in ALU
 left_ctrl <= acca_left;
 right_ctrl <= zero_right;

cpu01alt.v Page 53

 alu_ctrl <= alu_nop;
 cc_ctrl <= latch_cc;
 // idle bus cycle
 addr_ctrl <= idle_ad;
 dout_ctrl <= md_lo_dout;
 next_state <= error_state;
 end
 endcase
 end
// endmodule

 //------------------------------
 //
 // state machine
 //
 //------------------------------
 always @ (negedge clk) //(negedge clk or negedge rst or negedge state or negedge hold)
 begin
 if(rst == 1'b1) begin
 state <= reset_state;
 end
 else if(hold == 1'b1) begin
 state <= state;
 end
 else begin
 state <= next_state;
 end
 end
endmodule

