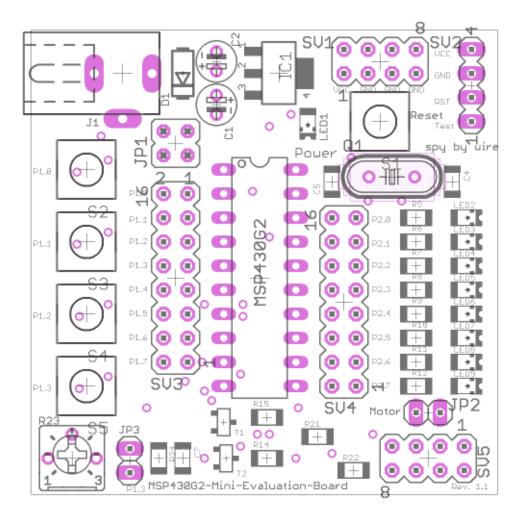

MSP430G2-Mini-Evaluation Board

Bei dem MSP430G2 Mini-Evaluation Board handelt es sich um eine kleine Entwicklungsplatine für MSP430G2 Mikrocontroller (14 und 20-pin DIP Sockel):

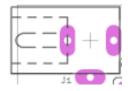
- 5cm x 5cm
- Stromversorgung über Netzteil o. spy by wire bzw. LaunchPad
- 3.3V Spannungsversorgung
- Programmierung u. Debugging über spy by wire (LaunchPad)
- 1x Reset-Taster
- Quarzsockel
- alle Ports frei konfigurierbar durch Steckbrücken o. Kabel

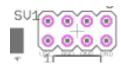

Eingabe:

- 4x Mini-Taster
- 1x Potentiometer
- 1x Anschluss für veränderliche Widerstände (NTC, LDR etc.) als Spannungsteiler

Ausgabe:

- 8x LEDs
- 2x N-Channel FET (low side)
- 2x P-Channel FET (high side)
- FETs konfigurierbar als H-Brücke


MSP430G2-Mini-Evalauation Board:

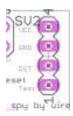


Das MSP430G2-Mini-Evaluation-Board besitzt diverse Anschlussmöglichkeiten (Stromversorgung, Programmierung, Eingänge, Ausgänge), welche auf den nächsten Seiten beschrieben werden.

Anschlüsse:

Stromversorgung (J1):

Die Stromversorgung des Boards erfolgt entweder über den **spy by wire** Anschluss (SV2) durch z.B. ein LaunchPad oder über die **Hohlbuchse** (J1), siehe Schaltplan. SV1 dient zur Herstellung der Stromversorgung (Pin 1-2), sowie zur Ablage von Jumpern. Bein Pin 3,5,7 von SV1 handelt es sich GND-Anschlüsse, Pin 4,6,8 sind nicht angeschlossen.


Niemals beide Stromversorgungen gleichzeitig anschliessen! Der Spannungsregler des Boards liefert eine Spannung von 3.3V, während z.B. die LaunchPads, je nach Revision, ca. 3.5V Spannung verwenden.

Absolute maximale Belastung:

Der verwendete Spannungsregler AMS1117 3.3V erlaubt nur eine maximale Eingangsspannung von ca. 12-14V. Verwendet werden sollten deshalb Netzteile mit nicht mehr als ca. 5-9V, am besten stabilisiert. Die Diode D1 ist nur für ca.1A ausgelegt.

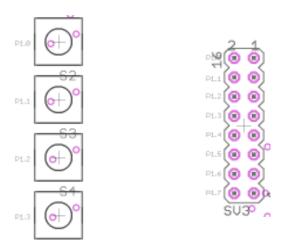
Die FETs (N-Channel, P-Channel) des Boards zum Schalten von Verbrauchern werden nur mit Strom über die Hohlbuchse (J1) versorgt.

Spy by wire (SV2):

Der spy by wire Anschluss (SV2) stellt die Verbindung zum z.B. LaunchPad her. Wird benötigt zur Programmierung.

Position	
4	VCC
3	GND
2	RST
1	TST

TST, RST u. GND werden zwingend benötigt. VCC ist ist nötig, wenn die Stromversorgung über den Programmieradapter erfolgen soll.


Eingänge:

Reset (S1):

Der Reset-Taster (S1) dient dazu den verwendeten Mikrocontroller bzw. das Programm im Betrieb zu resetten.

Taster S2-S5:

S2,3,4,5 sind Microtaster, die als Eingänge benutzt werden können. Sie sind direkt mit den Pins 10,12,14,16 von SV3 verbunden. Durch setzen der entsprechenden Steckbrücken (Jumper) an SV3 können direkte Verbindungen zu den Ports des verwendeten Mikrocontrollers hergestellt werden. Die Taster sind aber auch durch Kabel frei konfigurierbar.

Taster	Port	Pin (SV3)
S2	P1.0	15-16
S3	P1.1	13-14
S4	P1.2	11-12
S5	P1.3	9-10

Hinweis:

Die Pull-up Widerstände R27 und R30 der Taster S2 u. S5 auf dem Board sind nur optional. Sie stören die Auswertung der Eingänge von JP1 (Spannungsteiler) und JP3 (Potentiometer) bzw. die entsprechenden ADCs. Deshalb sollten diese pull-up Widerstände nur bestückt werden, wenn man sie unbedingt benutzen will. Ansonsten bitte die internen pull-ups für die entsprechenden Ports bzw. Taster verwenden.

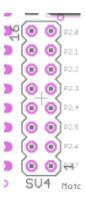
Potentiometer (JP3, R23):

Das Potentiometer R23 ist vorbereitet für den Port P1.3 bzw. Pin 10 von SV3 u. kann zur Eingabe in Verbindung mit einem ADC des Mikrocontrollers verwendet werden. Es besitzt noch einen zusätzlichen Anschluss (JP3) der entweder gesetzt werden muss oder auch zur freien Konfiguration des Potentiometers benutzt werden kann.

Spannungsteiler (JP1):

Der Jumperblock JP1 dient unter anderem zum Anschluss von veränderlichen Widerständen (LDR, NTC etc.) als Spannungsteiler. Siehe Schaltplan. Der Anschluss erfolgt normalerweise als veränderlicher Widerstand (Position 1-3) u. Widerstand (Position 2-4). An Pin 3 von JP1 befindet sich Vcc.

Position (JP1)	
1-3	NTC, LDR etc
2-4	Widerstand

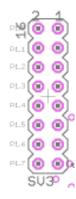

Der Widerstand in Position 2-4 wird normalerweise so ausgelegt, dass sich im Normalzustand mit dem veränderlichen Widerstand zusammen U/2 am Ausgang ergibt.

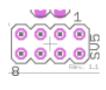
Der Ausgang von JP1 (Pin 1-2) ist verbunden mit Pin 16 von SV3. Durch einfaches setzen eines Jumpers kann eine Verbindung mit P1.0 bzw. dem dazugehörigen ADC des Mikrocontrollers hergestellt werden.

Ausgänge:

Als vordefinierte Ausgänge besitzt das Board **SV4**, ein LED-Array, sowie **SV5**, bestehend aus 2x N-Channel FETs u. 2x P-Channel FETs zum Schalten, die auch als H-Brücke konfiguriert werden können.

LED-Array (SV4):




Über SV4 kann eine direkte Verbindung der Ports des Mikrocontrollers zum LED-Array hergestellt werden. Entweder Jumper setzen oder durch Kabel frei konfigurieren.

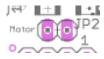
Position/Pin (SV4)	Port
1-2	P2.7
3-4	P2.6
5-6	P2.5
7-8	P2.4
9-10	P2.3
11-12	P2.2
13-14	P2.1
15-16	P2.0

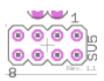
Die LEDs werden mit 1K5 Ohm Vorwiderständen betrieben, so dass der maximal zulässige Strom der Ports des Mikrocontrollers nicht überschritten wird. Dies sollte beim Anschluss anderer Verbraucher beachtet werden.

Schaltausgänge (SV5):

Die Schaltausgänge (SV5) des Boards bestehen aus 2x N-Channel FETs u. 2x P-Channel FETs, die als low side u. high side Schalter eingesetzt werden können. Die FETs sind auch konfigurierbar als sogenannte H-Brücke.

Durch einfaches setzen von Jumpern o. Kabel (SV3) können die entsprechenden FETs bzw. die Ausgänge über Ports des Mikrocontrollers angesteuert werden.

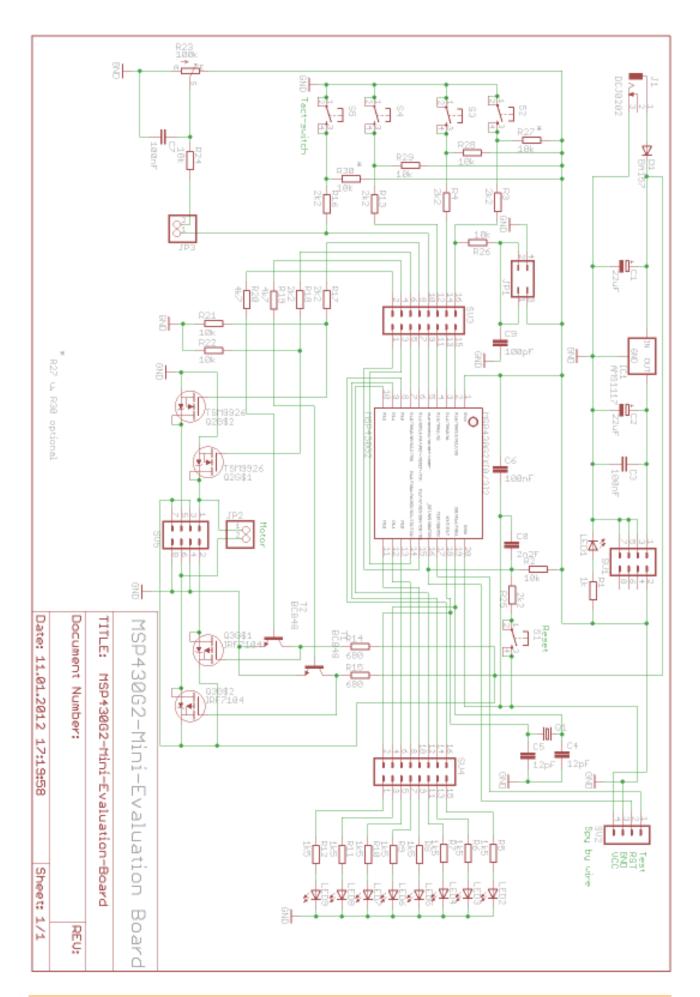

Position/Pin (SV5)	Port/Pin (SV3)	FET	Ansteuerung
1-3	P1.5 (5-6)	N-Channel	low side
5-7	P1.4 (7-8)	N-Channel	low side
2-4	P1.7 (1-2)	P-Channel	high side
6-8	P1.6 (3-4)	P-Channel	high side


Beispiel:

Wenn man z.B. einen Verbraucher an Pin 6-8 (SV5) anschliesst, kann dieser über den entsprechenden P-Channel FET (high side) über Port P1.6 (SV3: Pin 3-4) des Mikrocontrollers angesteuert werden. Dies kann durch setzen eines Jumpers (SV3: Pin 3-4) oder durch Zuordnung eines anderen Ports mittels Kabelverbindung erfolgen.

Konfiguration als H-Brücke:

Hierbei werden die vier FETs des Boards so konfiguriert, dass eine sogenannte H-Brücke entsteht, die eine Drehrichtungsumkehr ermöglicht. Der Verbraucher (z.B. Motor) wird an **JP2** angeschlossen. Zusätzlich werden die Positionen **1-2** u. **5-6** von **SV5** mit Jumpern verbunden.

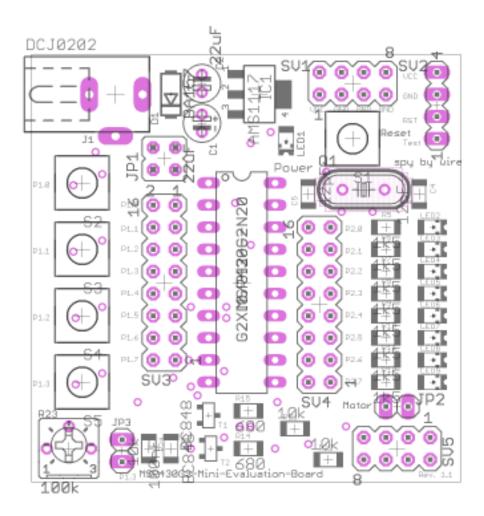


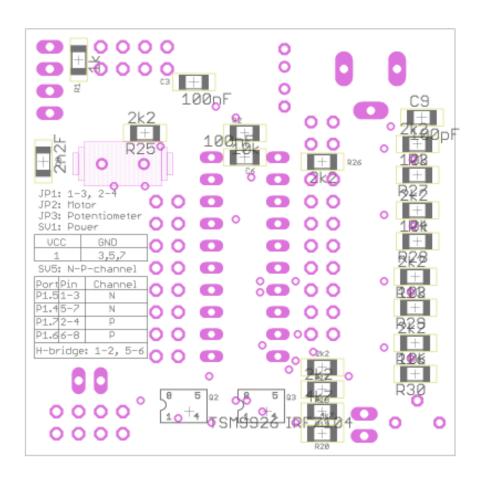
Durch entsprechende, gleichzeitige Ansteuerung der FETs über die Gates, jeweils diagonal ein P-Channel u. ein N-Channel FET wird der Verbraucher dann geregelt. Siehe Schaltausgänge (SV5). Niemals die beiden FETs einer Seite gleichzeitig ansteuern!

Tabelle zur Ansteuerung:

Drehrichtung	Port/Pin (SV3)	FET	Ansteuerung
Α	4 + 6	N-Channel	low side
В	2 + 8	N-Channel	low side

Soll der Motor in Drehrichtung A laufen, so müssen Pin 4 + 6 von SV3 gleichzeitig angesteuert werden. In Drehrichtung B müssen Pin 2 + 8 von SV3 gleichzeitig angesteuert werden.


Stückliste			MSP430G2 Mini-Evaluation Board
Menge	Wert	Device	Bauteile
1		CRYSTALHC49S	Q1
5		DTSM-6	S1, S2, S3, S4, S5
1		JP2Q	JP1
9		LEDCHIPLED_1206	LED1, LED2, LED3, LED4, LED5, LED6, LED7, LED8, LED9
1		MA04-1	SV2
2		MA04-2	SV1, SV5
2		MA08-2	SV3, SV4
2		PINHD-1X2	JP2, JP3
1	1k	R-EU_R1206	R1
8	1k5	R-EU_R1206	R5, R6, R7, R8, R9, R10, R11, R12
7	2k2	R-EU_R1206	R3, R4, R13, R16, R17, R18, R25
1	2n2F	C-EUC1206	C8
2	4k7	R-EU_R1206	R19, R20
9	10k	R-EU_R1206	R2, R21, R22, R24, R26, R27, R28, R29, R30
2	12pF	C-EUC1206	C4, C5
2	22uF	CPOL-EUE2-4	C1, C2
1	50k	TRIM_EU-B25P	R23
3	100nF	C-EUC1206	C3, C6, C7
1	100pF	C-EUC1206	C9
2	680	R-EU_R1206	R14, R15
1	AMS1117	LM1117	IC1
1	SS14	DIODE-DO214AA	D1
2	BC848	BC848	T1, T2
1	DCJ0202	DCJ0202	J1
1	G2X[0/3]2 -N20	G2X[0/3]2N20	MSP430G2
1	IRF7104	IRF7104	Q3
1	TSM9926	TSM9926	Q2


Stückliste:

Bauteil	Wert	Device	Package	Description
C1	22uF	CPOL-EUE2-4	E2-4	POLARIZED CAPACITOR,
European		CIOH HOHZ I		
C2	22uF	CPOL-EUE2-4	E2-4	POLARIZED CAPACITOR,
European		0102 2022 1		TOZIMIZZE CITTIOTION,
C3	100nF	C-EUC1206	C1206	CAPACITOR, European symbol
C4	12pF	C-EUC1206	C1206	CAPACITOR, European symbol
C5	12pF	C-EUC1206	C1206	CAPACITOR, European symbol
C6	100nF	C-EUC1206	C1206	CAPACITOR, European symbol
C7	100nF	C-EUC1206	C1206	CAPACITOR, European symbol
C8	2n2F	C-EUC1206	C1206	CAPACITOR, European symbol
C9	100pF	C-EUC1206	C1206	CAPACITOR, European symbol
D1	BA157	DIODE-DO214AA	DO214AA	DIODE
IC1	AMS1117	LM1117	SOT223	
J1	DCJ0202	DCJ0202	DCJ0202	DC POWER JACK
JP1		JP2Q	JP2Q	JUMPER
JP2		PINHD-1X2	1X02	PIN HEADER
JP3		PINHD-1X2	1X02	PIN HEADER
LED1		LEDCHIPLED 1206		
LED2		LEDCHIPLED 1206	_	
LED3		LEDCHIPLED 1206	_	
LED4		LEDCHIPLED 1206		
LED5		LEDCHIPLED 1206	_	
LED6		LEDCHIPLED 1206	_	
LED7		LEDCHIPLED 1206	_	
LED8		LEDCHIPLED 1206		
LED9		LEDCHIPLED 1206		
	C2Y[0/312N20	G2X[0/3]2N20		MSP430G2X[0/3]2
Q1	G2X[0/3]2 N20	CRYSTALHC49S	HC49/S	CRYSTAL
Q1 Q2	TSM9926	TSM9926	S08-2	HEXFET® Power MOSFET
	IRF7104	IRF7104	S08-2	
Q3 R1	1k / 104			HEXFET® Power MOSFET
R2	10k	R-EU_R1206	R1206 R1206	RESISTOR, European symbol
		R-EU_R1206		RESISTOR, European symbol
R3	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R4	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R5	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R6	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R7	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R8	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R9	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R10	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R11	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R12	1k5	R-EU_R1206	R1206	RESISTOR, European symbol
R13	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R14	680	R-EU_R1206	R1206	RESISTOR, European symbol
R15	680	R-EU_R1206	R1206	RESISTOR, European symbol
R16	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R17	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R18	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R19	4k7	R-EU_R1206	R1206	RESISTOR, European symbol
R20	4k7	R-EU_R1206	R1206	RESISTOR, European symbol
R21	10k	R-EU_R1206	R1206	RESISTOR, European symbol
R22	10k	R-EU_R1206	R1206	RESISTOR, European symbol
R23	100k	TRIM_EU-B25P	B25P	POTENTIOMETER
R24	10k	R-EU_R1206	R1206	RESISTOR, European symbol
R25	2k2	R-EU_R1206	R1206	RESISTOR, European symbol
R26	10k	R-EU_R1206	R1206	RESISTOR, European symbol
R27	10k	R-EU_R1206	R1206	RESISTOR, European symbol
R28	10k	R-EU_R1206	R1206	RESISTOR, European symbol

R29	10k	R-EU R1206	R1206	RESISTOR, European symbol
R30	10k	R-EU R1206	R1206	RESISTOR, European symbol
S1		DTSM-6	DTSM-6	
S2		DTSM-6	DTSM-6	
S3		DTSM-6	DTSM-6	
S4		DTSM-6	DTSM-6	
S5		DTSM-6	DTSM-6	
SV1		MA04-2	MA04-2	PIN HEADER
SV2		MA04-1	MA04-1	PIN HEADER
SV3		MA08-2	MA08-2	PIN HEADER
SV4		MA08-2	MA08-2	PIN HEADER
SV5		MA04-2	MA04-2	PIN HEADER
T1	BC848	BC848	SOT23	NPN TRANSISTOR
Т2	BC848	BC848	SOT23	NPN TRANSISTOR

Bestückung:

