## Transformationseigenschaften eines idealen Transformators



## Transformationseigenschaften eines idealen Gyrators

| Bauelement | Kettenform A | Admittanzform $\mathbf{Y}$ | Schaltung / Ersatzschaltung |
| :---: | :---: | :---: | :---: |
| Z | $\mathrm{Z}_{1}=\frac{\mathrm{A}_{12}}{\mathrm{~A}_{21}} \cdot \mathrm{Y}_{2}$ | $\mathrm{Z}_{1}=\frac{1}{\mathrm{Y}_{12} \cdot \mathrm{Y}_{21}} \cdot \mathrm{Y}_{2}$ | Kettenpfeilsystem |
| R | $\mathrm{R}_{1}=\frac{\mathrm{A}_{12}}{\mathrm{~A}_{21}} \cdot \mathrm{G}_{2}$ | $\mathrm{R}_{1}=\frac{1}{\mathrm{Y}_{12} \cdot \mathrm{Y}_{21}} \cdot \mathrm{G}_{2}$ |  |
| L | $\mathrm{L}_{1}=\frac{\mathrm{A}_{12}}{\mathrm{~A}_{21}} \cdot \mathrm{C}_{2}$ | $\mathrm{L}_{1}=\frac{1}{\mathrm{Y}_{12} \cdot \mathrm{Y}_{21}} \cdot \mathrm{C}_{2}$ | $\left.\begin{array}{l}  \\ e_{1} \\ \bullet \end{array}\right]\left[\begin{array}{cc} A(V) \\ 0 & A_{12} \\ A_{21} & 0 \end{array}\right] 2 \square Y_{2} \downarrow e_{2}$ |
| C | $\mathrm{C}_{1}=\frac{\mathrm{A}_{21}}{\mathrm{~A}_{12}} \cdot \mathrm{~L}_{2}$ | $\mathrm{C}_{1}=\mathrm{Y}_{12} \cdot \mathrm{Y}_{21} \cdot \mathrm{~L}_{2}$ | $f_{1}$ |
| ReihenSchaltung | $\mathrm{Y}_{1}=\frac{\mathrm{A}_{21}}{\mathrm{~A}_{12}} \cdot\left(\mathrm{Z}_{2}^{1}+\mathrm{Z}_{2}^{2}\right)$ | $\mathrm{Z}_{1}=\frac{1}{\mathrm{Y}_{12} \cdot \mathrm{Y}_{21}} \cdot\left(\mathrm{Y}_{2}^{1}+\mathrm{Y}_{2}^{2}\right)$ | $\mathrm{e}_{1} \downarrow 1 \square \mathrm{Z}_{1}$ |
| ParallelSchaltung | $\mathrm{Z}_{1}=\frac{\mathrm{A}_{12}}{\mathrm{~A}_{21}} \cdot\left(\mathrm{Y}_{2}^{1}+\mathrm{Y}_{2}^{2}\right)$ | $\mathrm{Y}_{1}=\mathrm{Y}_{12} \cdot \mathrm{Y}_{21} \cdot\left(\mathrm{Z}_{2}^{1}+\mathrm{Z}_{2}^{2}\right)$ |  |
| f | $\mathrm{f}_{2}=\frac{1}{\mathrm{~A}_{12}} \cdot \mathrm{e}_{1}$ | $\mathrm{f}_{2}=\mathrm{Y}_{21} \cdot \mathrm{e}_{1}$ | Umrechnung Tor1 / Tor2 |
| e | $\mathrm{e}_{2}=\frac{1}{\mathrm{~A}_{21}} \cdot \mathrm{f}_{1}$ | $\mathrm{e}_{2}=\frac{1}{\mathrm{Y}_{12}} \cdot \mathrm{f}_{1}$ | Umrechnung Tor1 / Tor2 |

