Bedienungsanleitung

4-Q-EC Servoverstärker 70 VDC

Ausgabe Oktober 1999

maxon motor ag

Brünigstrasse 220 CH-6072 Sachseln Tel: +41/41-666 15 00 Fax: +41/41-666 16 50

Inhaltsverzeichnis

1	SICHERHEITSHINWEISE	. 4
2	TECHNISCHE BESCHREIBUNG	5
2.1	4-Quadranten-Betrieb	5
	2 SINUSKOMMUTIERUNG	
	B ENDSTUFE	
	REGELKREIS	
3	MASSBILD	. 7
4	TECHNISCHE DATEN	. 8
4 1	LEISTUNGSDATEN:	8
	2 EINGÄNGE:	
	3 Ausgänge:	
	SPANNUNGSAUSGÄNGE:	
	5 EINSTELLREGLER:	
4.6	S ANZEIGEN/STATUSMELDUNGEN DURCH LED:	. o
	7 TEMPERATURBEREICH:	
	B MECHANISCHE DATEN:	
	ANSCHLÜSSE (STECKERVERBINDER):	
4.8	ANSORLUSSE (STECKERVERBINDER).	. 9
5	KLEMMENBELEGUNG	10
6	GESAMTÜBERSICHT MINIMALVERDRAHTUNG	11
7	ANSCHLIESSEN DES GERÄTES	12
7.1	Motor	12
7.2	Resolver	
	B ENDSCHALTER	
	3.1 ohne Endschalter	
	3.2 mit Endschalter	
	FREIGABE	
	4.1 24 VDC aus dem Stromversorgungsgerät (z.B. 133379)	
	1.2 +12V Ext. / -12 V Ext. vom Sinusverstärker	
	5 BESCHALTUNG DES DREHZAHL-SOLLWERTEINGANGS	
	5.1 Externer Sollwert ±10 VDC	
	5.2 Sollwertvorgabe mit Potentiometer	
7.0	5.2 Soliwertvorgabe filit Foteritionieter	15
_		
	ANSCHLUSS DES OEM POWER SUPPLY	
8.1	Warnhinweise	16
8.1 8.2	Warnhinweise2 Installationsvorschrift	16 16
8.1 8.2 8.3	Warnhinweise	16 16 16
8.1 8.2 8.3 8.3	WARNHINWEISE 2 INSTALLATIONSVORSCHRIFT	16 16 16 <i>16</i>
8.1 8.2 8.3 8.3 8.3	WARNHINWEISE 2 INSTALLATIONSVORSCHRIFT	16 16 16 16
8.1 8.2 8.3 8.3 8.4	WARNHINWEISE I INSTALLATIONSVORSCHRIFT B PRIMÄRSEITIG B.1 bei Netzspannung 230VAC B.2 bei Netzspannung 115VAC B SEKUNDÄRSEITIG	16 16 16 16 16
8.1 8.2 8.3 8.3 8.3 8.4 8.4	WARNHINWEISE I INSTALLATIONSVORSCHRIFT PRIMÄRSEITIG 1.1 bei Netzspannung 230VAC SEKUNDÄRSEITIG 1.1 DC Versorgungsspannung 70VDC / 3.5 A	16 16 16 16 16 17
8.1 8.2 8.3 8.3 8.4 8.4 8.4	WARNHINWEISE I INSTALLATIONSVORSCHRIFT PRIMÄRSEITIG 1.1 bei Netzspannung 230VAC I Sekundärseitig I DC Versorgungsspannung 70VDC / 3.5 A I 2 AC Hilfsspannung 18VAC / 1 A	16 16 16 16 17 17
8.1 8.2 8.3 8.3 8.4 8.4 8.4 8.4	WARNHINWEISE I INSTALLATIONSVORSCHRIFT PRIMÄRSEITIG 1.1 bei Netzspannung 230VAC SEKUNDÄRSEITIG 1.1 DC Versorgungsspannung 70VDC / 3.5 A	16 16 16 16 17 17 17

9	ABGLEICHARBEITEN	. 19
9.1	EFFEKTIVSTROMBEGRENZUNG POTENTIOMETER P1 (I _{RMS})	. 19
	MAX. STROMBEGRENZUNG POTENTIOMETER P2 (I _{MAX})	
9.3	MAX. DREHZAHLEINSTELLUNG POTENTIOMETER P3 (SPEED ADJ)	. 19
9.4		
	FEINEINSTELLUNG DES OFFSETS POTENTIOMETER P5 (OFFSET FINE)	
9.6	VERSTÄRKUNG DES DREHZAHLREGLERS POTENTIOMETER P6 (GAIN)	. 20
10	FUNKTIONSBESCHREIBUNG	21
	1 EINGÄNGE	
	1.1 Drehzahlsollwert n _{soll}	
	1.3 Freigabe	
	1.4 Endschalter	
	2 Ausgänge	
	2.1 Monitorausgangssignale	
	2.2 Inkrementalgebersignale	
	2.3 Anzeigen / Statusmeldungen	
	3 RESET	
11	FEHLERDIAGNOSE IM LED DISPLAY	. 28
	1 ENABLE	
	2 CURRENT LIMIT RMS	
	3 LIMIT SWITCH	
	4 SENSOR ERROR	
	5 SHORT CIRCUIT	
	6 READY	
	7 CURRENT LIMIT MAX	
11.	O OVER TEMPERATURE	. 29
12	KONFIGURATION ALS STROMREGLER	. 30
12.	1 EXTERNER STROMSOLLWERT ± 10 VDC	. 31
13	KLEMMENBELEGUNG (133339)	. 32
	1 ÜBERSICHTSZEICHNUNG	
	2 KLEMMEN "LEISTUNG"	
13.	3 KLEMMEN "SIGNALE"	. 33
14	BESTELLNUMMERN	. 34
15	TIPS ZUR EMV-GERECHTEN INSTALLATION	. 35
15.	1 Verbindungskabel	. 35
	2 MOTORANSCHLUSS	
	3 RESOLVERANSCHLUSS	
	4 INKREMENTALGEBERSIGNAL	
	5 LEITUNGEN FÜR ANALOGE SIGNALE	
	6 LEITUNGEN FÜR STATUSSIGNALE	
	7 ALLGEMEINE HINWEISE	
	7.1 HF-Abblockung	
75	7.2 Schirmerdung	36

1 Sicherheitshinweise

Fachpersonal

Die Installation und Inbetriebnahme darf nur von geeignet ausgebildetem Fachpersonal vorgenommen werden.

Gesetzliche Vorschriften

Der Anwender muss sicherstellen, daß der Servoverstärker und die dazugehörigen Komponenten nach den örtlichen gesetzlichen Vorschriften montiert und angeschlossen werden.

Last abkoppeln

Für eine Erstinbetriebnahme soll der Motor grundsätzlich freilaufend, also mit abgekoppelter Last betrieben werden.

Zusätzliche Sicherheitseinrichtungen

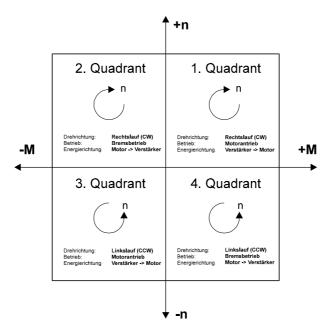
Elektronische Geräte sind nicht grundsätzlich ausfallsicher. Maschinen und Anlagen sind deshalb mit geräteunabhängigen Überwachungs- und Sicherheitseinrichtungen zu versehen. Es muss sichergestellt sein, dass nach Ausfall der Geräte, bei Fehlbedienung, bei Ausfall der Regel- und Steuereinheit, bei Kabelbruch usw. der Antrieb bzw. die gesamte Anlage in einen sicheren Betriebszustand geführt wird.

Reparaturen

Reparaturen dürfen nur von autorisierten Stellen oder beim Hersteller durchgeführt werden. Durch unbefugtes Öffnen und unsachgemässe Reparaturen können erhebliche Gefahren für den Benutzer entstehen.

Lebensgefahr

Achten Sie darauf, dass während der Installation des Sinusverstärkers alle betroffenen Anlagenteile stromlos sind!
Nach dem Einschalten keine spannungsführenden Teile berühren!



Elektrostatisch gefährdete Bauelemente (EGB)

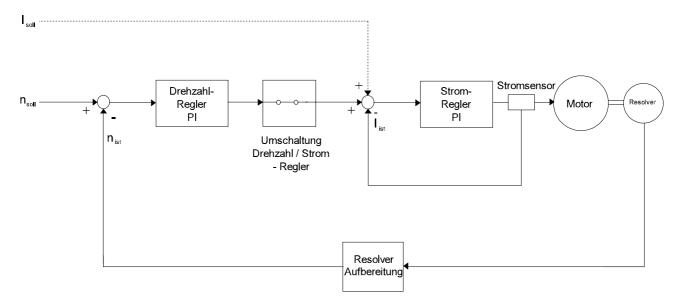
2 Technische Beschreibung

2.1 4-Quadranten-Betrieb

Der maxon electronic commutation control Servoverstärker ist ein getakteter 4-Quadranten-Verstärker. Das heisst: geregelter Betrieb beim Antreiben und beim Bremsen in beiden Drehrichtungen.

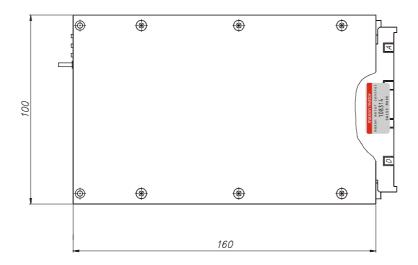
2.2 Sinuskommutierung

Der Servoverstärker steuert bürstenlose Servomotoren nach dem Prinzip der Sinuskommutierung an. Die Ströme in den 3 Motorenwicklungen werden gemäss einer Sinusfunktion des Drehwinkels eingeprägt. Diese Technik bietet die Voraussetzung für ein sehr gleichmässiges Drehmoment, das durch die Winkelstellung des Motors kaum beeinflusst wird. Für das Istwertsignal wird ein Resolver benötigt.

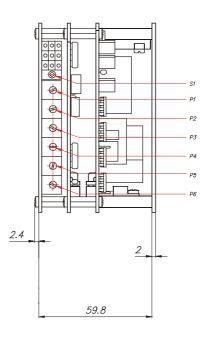

2.3 Endstufe

In der Leistungsendstufe werden mit Hilfe einer sechspulsigen PWM-MOSFET-Brücke (Taktfrequenz 20kHz) die drei sinusförmigen Phasenströme erzeugt. Dabei können, je nach Konfiguartion, Motorenströme bis zu maximal 20 A geliefert werden.

2.4 Regelkreis


Der Sinusverstärker ist als Kaskadenregler aufgebaut. Dem eigentlichen Drehzahl-Regler ist eine schnelle Stromregelung untergeordnet.

Der Sinusverstärker kann als Drehzahlregler (Standardausführung) oder nur als Stromregler betrieben werden (siehe unter Kapitel Stromregler).



Die Parameter der beiden PI-Regler sind für jeden Sinusverstärkertypen durch das Konfigurationsmodul bereits optimal ausgelegt, somit entfallen für den Anwender komplizierte Abgleicharbeiten.

3 Massbild

4 Technische Daten

4.1 Leistungsdaten:

Versorgung Leistungsteil	+24 V +70 V DC, Rippel < 5%
Versorgung Steuerteil	18 V AC, 1 A
Max. Ausgangsstrom I _{max}	14 A ^{1), 2), 3)}
Ausgangsstrom dauernd I _C	8 A '',' ='
Max. Leistungsabgabe P _{max}	
Leistungsabgabe dauernd P _C	700 W ^{1), 5)}
Dauerbelastbarkeit Bremschopper	5 W
Taktfrequenz der Endstufe	
max. Drehzahl (2-pol. Motor)	20'000 min ⁻¹

4.2 Eingänge:

Drehzahlsollwert n _{soll}	10 V +10 V, R _i > 18 kOhm
Stromsollwert I _{soll}	10 V +10 V, R _i > 18 kOhm
Freigabe optisch entkoppelt	+12 V +28 V, $R_i = 2 \text{ kOhm}$
Endschalter rechts (CW)	Kontakt offen = gesperrt
Endschalter links (CCW)	Kontakt offen = gesperrt

4.3 Ausgänge:

Monitor Solldrehzahl n _{soll}	8 V +8 V, max. 5 mA 6)
Monitor Istdrehzahl Tacho	8 V +8 V, max. 5 mA 6)
Monitor Sollstrom I _{soll}	10 V +10 V, max. 5 mA 6)
8 Überwachungsmeldungen z.B. für SPS	max. 30 V, I _{Last} < 18 mA
optoentkoppelt, open Collector,	kurzschlussfest, verpolgeschützt
Inkrementalgebersignal	
• Auflögung	12 hit

- Kanal I, I/...1 Puls/U, Pulsbreite = 1/4096U, differentiell (ähnlich RS 485)

4.4 Spannungsausgänge:

Hilfsspannung	+12 V, -12 V, max. 80 mA
Speisung Resolver	10 V _{Peak} , 100 mA, 10 kHz

4.5 Einstellregler:

Effektivstrom-Begrenzung I _{RMS}	0 ca. 60% ³⁾
J Time	(Bewertungszeitkonstante ca. 10 sec.)
Maximalstrombegrenzung I _{max}	20 ca. 100% ³
Sollwertanpassung Speed Adi	
Offset arch	

Offset grob
Offset fein
Gain Drehza

Gain Drehzahlregler

¹⁾ Bei Nennbedingungen: Standardkühlkörper, vertikale Orientierung, freie Konvektion, Umgebungstemperatur 20°C

²⁾ Effektivwert eines sinusförmigen Stromes; der Scheitelwert ist 1,41 mal höher

^{3) 100%} entsprechen dem am Konfigurationsmodul vor definierten Wert, max. 14 A

⁴⁾ Dauer 0 bis ca. 10 sec., abhängig von der I _{RMS} Einstellung und der Vorgeschichte der Belastung

⁵⁾ Bei max. Zwischenkreisspannung von 70 V

 $^{^{6)}}$ 10 V bzw. 8 V entsprechen dem am Konfigurationsmodul vordefinierten Wert I_{max} , n_{max} .

4.6 Anzeigen/Statusmeldungen durch LED:

Betriebsbereitschaft (ready)

Freigabe (enable)

Effektivstrom-Begrenzung (current limit I_{RMS})

Maximalstrom-Begrenzung (current limit I_{max})

Überstrom / Kurzschluss (short circuit)

Übertemperatur (over temperature)

Resolverfehler (sensor error)

Endschalter / Drehrichtungs-Begrenzung (limit switch)

4.7 Temperaturbereich:

Betriebstemperaturbereich:	0	+70°C ')
Lagertemperaturbereich:	-40	+85°C

4.8 Mechanische Daten:

Gewicht:	900 g
Abmessungen:	Europaformat 100 x 160
Frontplatte	

4.9 Anschlüsse (Steckerverbinder):

Signale:	DIN 41612-F48
Leistung:	DIN 41612-H15

_

 $^{^{7)}}$ Hohe Dauerleistung bei T_U >20°C erfordert verstärkte Kühlung (Kühlkörper, Ventilator)

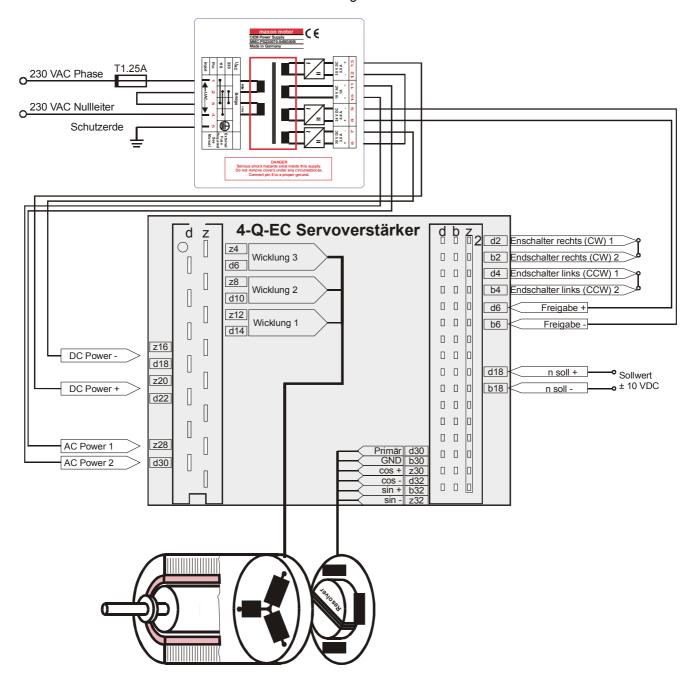
5 Klemmenbelegung

Stecker "Leistung"	
Reihe d	Reihe z

	Motoranschluss 3
Motoranschluss 3	
	Motoranschluss 2
Motoranschluss 2	
	Motoranschluss 1
Motoranschluss 1	
	DC Power -
DC Power -	
	DC Power +
DC Power +	
	Abschirmung
Schutzerde	
	18VAC Power 1
18VAC Power 2	
	n.c.

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

Stecker "Signale"			
Reihe d	Reihe b	Reihe z	


Endschalter re (CW)	Endschalter re (CW)	Abschirmung
1	2	_
Endschalter li (CCW) 1	Endschalter li (CCW) 2	Abschirmung
Freigabe +	Freigabe -	Schutzerde
Überwachung U+ (SPS)	Überwachung U- (SPS)	Abschirmung
Freigabe (SPS)	Betriebsbereit (SPS)	Endschalter (SPS)
Kurzschluss (SPS)	Resolverfehler (SPS)	Übertemperatur (SPS)
I _{RMS} (SPS)	I _{max} (SPS)	Abschirmung
+12V Ext.	GND Ext.	-12V Ext.
n _{soll} +	n _{soll} -	I _{soll} -
Monitor GND	I _{soll} +	Abschirmung
Monitor n _{soll}	Monitor Tacho	Monitor I _{soll}
Index Kanal I	Index Kanal /I	Abschirmung
Kanal /B	Kanal B	Kanal /A
Kanal A	n.c.	Abschirmung
Resolver Primär	GND Primär	cos +
cos -	sin +	sin -

Bemerkung:

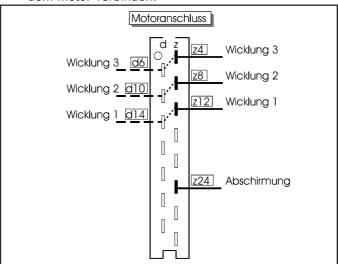
(SPS) kennzeichnet Überwachungssignale, die beispielsweise von einer programmierbaren Steuerung ausgewertet werden können.

6 Gesamtübersicht Minimalverdrahtung

Mit der Minimalverdrahtung wird das Antriebssystem betriebsbereit. Die weiteren Beschaltungen bewirken Zusatzfunktionen.

7 Anschliessen des Gerätes

7.1 Motor

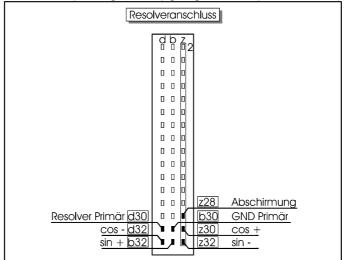


Anschliessen der 3 Wicklungen des Motores:

Für die Erhöhung der Kontaktsicherheit ist eine Doppelbelegung der Anschlüsse empfohlen.

Um Störaussendungen zu minimieren, wird empfohlen, ein abgeschirmtes Kabel zu verwenden.

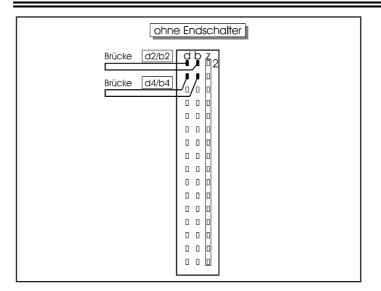
- Abschirmung auf der Verstärkerseite mit der Abschirmung [z24] verbinden
- Abschirmung auf der Motorseite möglichst über das Steckergehäuse mit dem Motor verbinden.


7.2 Resolver

Anschliessen der 6 Resolverleitungen:

Es wird empfohlen, für die Verbindung zum Resolver ein abgeschirmtes Kabel zu verwenden!

- Leitungspaare "cos+/cos-", "sin+/sin-" und "Resolver Primär/GND Primär" sollen je verdrillt und paarweise abgeschirmt werden.
- Auf der Resolverseite dürfen die Abschirmungen nicht auf das Steckergehäuse (Motorgehäuse) gelegt werden (Erdschleifen!).

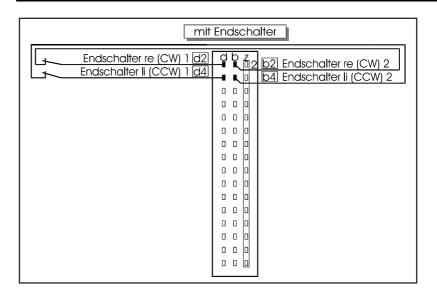


7.3 Endschalter

7.3.1 ohne Endschalter

Mit den Endschaltern kann die positive und die negative Drehrichtung des Motors gesperrt werden.

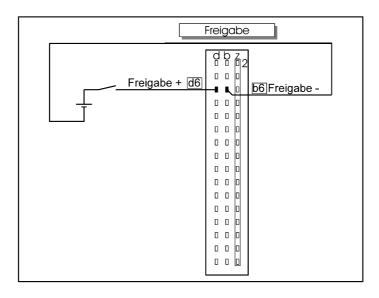
Für den Normalbetrieb (ohne Drehrichtungssperrung) muss zwischen den Endschalteranschlüssen anstelle der Endschalter eine Drahtbrücke eingebaut werden.



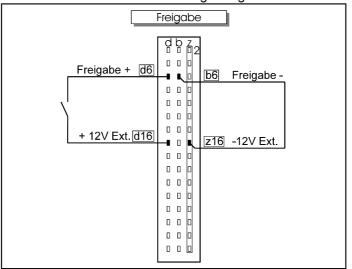
7.3.2 mit Endschalter

Werden die Endschalterfunktionen benötigt, sind statt der Drahtbrücken die Endschalter entsprechend anzuschliessen.

Hinweis: auch bei aktivierter Drehrichtungsbegrenzung ist es möglich, dass sich der Motor durch Offseteinflüsse immer noch langsam dreht. Daher müssen geeignete Zusatzmassnahmen per Hardware oder durch die übergeordnete Steuerung ergriffen werden, um ein langsames Weiterdriften in der gesperrten Richtung zu verhindern (z.B. Verstärker disable oder durch herausfahren aus der Endschalterposition).



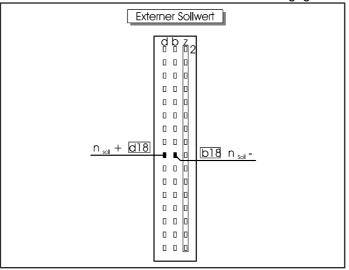
7.4 Freigabe


Zur Freigabe (Aktivierung) der Endstufe muss eine Spannung von 12 VDC bis 24 VDC zwischen die Freigabeanschlüsse angelegt werden. Mögliche Spannungsquellen sind das individuelle Stromversorgungsgerät oder die Abgabespannung des Servoverstärkers:

7.4.1 24 VDC aus dem Stromversorgungsgerät (z.B. 133379)

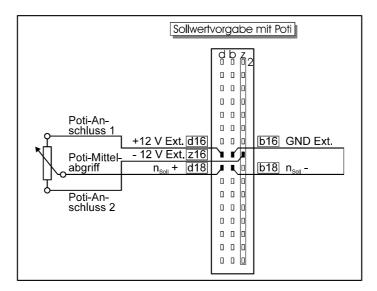
7.4.2 +12V Ext. / -12 V Ext. vom Sinusverstärker

Siehe auch Funktionsbeschreibung: Freigabe



7.5 Beschaltung des Drehzahl-Sollwerteingangs

Der Drehzahl-Sollwert kann durch eine externe Spannung oder durch ein Potentiometer vorgegeben werden:


7.5.1 Externer Sollwert ±10 VDC

Der externe Sollwert kann z.B. von einer SPS vorgegeben werden.

7.5.2 Sollwertvorgabe mit Potentiometer

Empfohlenes Potentiometer: 2,2 kOhm / 0.5W

8 Anschluss des OEM Power Supply

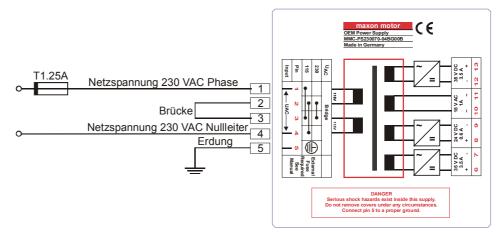
Die folgenden Ausführungen beziehen sich auf das Power Supply 133379 (MMC-PS230070-04BG00B)

8.1 Warnhinweise

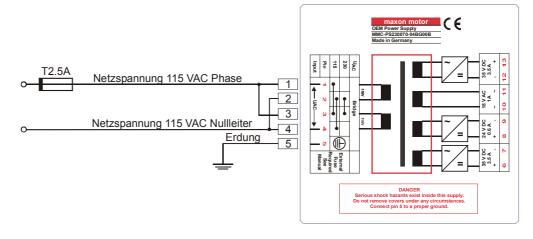
Bevor an diesem Netzteil manipuliert wird, muss unbedingt gewährleistet sein, dass sich der Netzeingang in einem spannungslosen Zustand befindet.

In diesem Gerät befinden sich Kondensatoren, welche nach Abschalten der Eingangsspannung noch Spannung führen können.

8.2 Installationsvorschrift



Die Installation darf nur von dementsprechend ausgebildeten Fachpersonen vorgenommen werden.

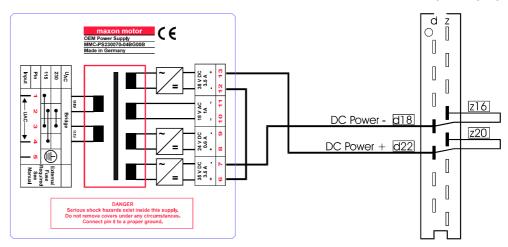

8.3 Primärseitig

Die Primärseite des Stromversorgungsgerätes muss immer über eine geeignete Schmelzsicherung an das Netz angeschlossen werden.

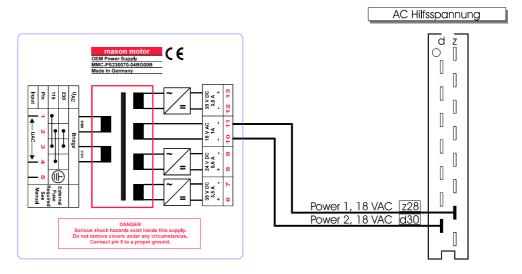
8.3.1 bei Netzspannung 230VAC

8.3.2 bei Netzspannung 115VAC

8.4 Sekundärseitig


8.4.1 DC Versorgungsspannung 70VDC / 3.5 A

An der Stromversorgung (133379) eine Brücke an die sekundärseitigen Anschlüsse 6 und 12 legen.


Die DC Versorgungsspannung 70 VDC stehen nun an der Klemme 13 (70 VDC +) und der Klemme 7 (GND) zur Verfügung.

Schliessen Sie nun die DC-Versorgung für den Servoverstärker wie folgt an:

DC Spannungsversorgung

8.4.2 AC Hilfsspannung 18VAC / 1 A

8.5 Wichtige Hinweise zur Stromversorgung

8.5.1 Sinusverstärker an der Stromversorgung anschliessen

- Die DC-Spannungsversorgung +24V...+70V und die AC-Hilfsspannung 18VAC müssen immer galvanisch getrennt sein.
- Werden mehrere Sinusverstärker parallel betrieben, muss die AC-Hilfsspannungen 18VAC für jeden Sinusverstärker einzeln, galvanisch getrennt voneinander bezogen werden.
 - DC-Versorgungsspannung kann, wenn die Leistung des Netzteils ausreicht, parallel betrieben werden.

Monitor GND

GND Ext.

GND Primär

AC Power 2

sind auf dem gleichen GROUND Potential.

Der Anschluss DC-Power (-)

ist hochohmig ($1M\Omega$) mit dem GROUND Potential verbunden.

9 Abgleicharbeiten

9.1 Effektivstrombegrenzung Potentiometer P1 (I_{RMS})

Das Potentiometer P1 (I_{RMS}) bestimmt den RMS-(Effektivwert) des Motorstromes.

Die (I_{RMS}) Begrenzung dient als Schutz gegen thermische Überlast des Motors. Für die ersten Versuche empfiehlt es sich, das Potentiometer P1 (I_{RMS}) auf ca. ¼ bis ½ Maximalausschlag zu stellen. Wird der Motor in einer Anwendung zu heiss, muss das Potentiometer P1 (I_{RMS}) auf einen kleineren Wert eingestellt werden.

Rechtsanschlag : ca. 60% des maximal Stromes (I_{max}) Linksanschlag : Motorstrom Null

Beachte:

Bei Rechtsanschlag wird der Motor mit mehr als dem doppelten definierten Dauerstromes betrieben.

🛚 Vorsicht: Überhitzungsgefahr

 I_{max} ist festgelegt durch das Konfigurationsmodul, vergleiche dazu Kapitel 14 "Bestellnummern". Siehe auch Motordaten im maxon Katalog.

9.2 Max. Strombegrenzung Potentiometer P2 (I_{max})

Mit dem Potentiometer P2 (I_{max}) kann der maximale Motorstrom eingestellt werden.

Der Motorstrom sollte gross genug eingestellt werden, um z.B. ausreichende Motorbeschleunigung zu erzielen. Für die ersten Versuche empfiehlt es sich, das Potentiometer P2 (I_{max}) auf ca. $^{3}4$ Maximalausschlag zu stellen.

Rechtsanschlag: ca. 100 % des maximal Stromes (I_{max}) Linksanschlag: ca. 20 % des maximal Stromes (I_{max})

 I_{max} ist festgelegt durch das Konfigurationsmodul, vergleiche dazu Kapitel 14 "Bestellnummern".

9.3 Max. Drehzahleinstellung Potentiometer P3 (Speed adj)

Mit dem Potentiometer P3 (Speed adj.) wird die maximal mögliche Drehzahl eingestellt.

Max. Drehzahlsollwert (z.B. 10V) vorgeben und P3 soweit drehen, bis die gewünschte max. Drehzahl erreicht ist.

Rechtsanschlag: maximal mögliche Drehzahl n_{max} Linksanschlag: ca. 20 % der maximal möglichen Drehzahl n_{max}

 n_{max} ist festgelegt durch das Konfigurationsmodul, vergleiche dazu Kapitel 14 "Bestellnummern".

9.4 Grobeinstellung des Offsets Potentiometer P4 (Offset coarse)

Drehzahlsollwert null vorgeben, z.B. durch Kurzschliessen des Sollwerteinganges d18/b18 (Stecker Signale)

Mit dem Potentiometer P4 (Offset coarse) grob den Motor auf Drehzahl null abgleichen.

Beachte: Die Einstellung des Offsets, kann durch Temperaturveränderungen beeinflusst werden.

9.5 Feineinstellung des Offsets Potentiometer P5 (Offset fine)

Wenn nötig mit Potentiometer P5 (Offset fine) ein Feinabgleich durchführen, bis die Motorwelle still steht.

9.6 Verstärkung des Drehzahlreglers Potentiometer P6 (Gain)

Mit dem Potentiometer P6 (Gain) kann die Verstärkung des Drehzahlreglers abgeglichen werden.

Falls der Motor unruhig wird, vibriert oder Geräusche erzeugt, ist die Verstärkung zu gross eingestellt und das Potentiometer P6 (Gain) muss zurück gedreht werden, bis die Instabilität des Regelkreises in allen Lastfällen des Antriebs verschwindet.

Rechtsanschlag: grosse Verstärkung des Reglers, schnellere Reaktion aber

grosses Überschwingen

Linksanschlag: kleine Verstärkung des Reglers, langsame Reaktion

10 Funktionsbeschreibung

10.1 Eingänge

10.1.1 Drehzahlsollwert n_{soll}

Der Drehzahlsollwert-Eingang ist als Differenzverstärker beschaltet. Somit können potentialfreie Spannungen beliebiger Anschlusspolarität angeschlossen werden.

Beschaltung siehe unter Kapitel 7.5, "Beschaltung des Drehzahl-Sollwerteingangs".

Eingangsspannungsbereich	+/- 10 VDC, nominell
Eingangswiderstand	>= 18 kΩ
positiver Drehzahlsollwert n _{soll}	$(n_{soll} +) > (n_{soll} -)$
negativer Drehzahlsollwert n _{soll}	$(n_{soll} +) < (n_{soll} -)$

10.1.2 Stromsollwert I_{soll}

Der Stromsollwert-Eingang ist als Differenzverstärker beschaltet. Somit können potentialfreie Spannungen beliebiger Anschlusspolarität angeschlossen werden. Beschaltung siehe unter Kapitel 12.1, "Externer Stromsollwert \pm 10 VDC"

Eingangsspannungsbereich	+/- 10 VDC, nominell
Eingangswiderstand	>= 18 kΩ
positive Strom- bzw. Drehmomentvorgabe I_{soll}	$(I_{SOII} +) > (I_{SOII} -)$
Negative Strom- bzw. Drehmoment-	$(I_{SOII} +) < (I_{SOII} -)$
vorgabe I _{soll}	

10.1.3 Freigabe

Wird zwischen die Anschlüsse Freigabe + und Freigabe- eine Spannung angelegt, schaltet der Verstärker die Motorspannung an die Wicklungsanschlüsse. Beschaltung siehe unter Kapitel 7.4, "Freigabe"

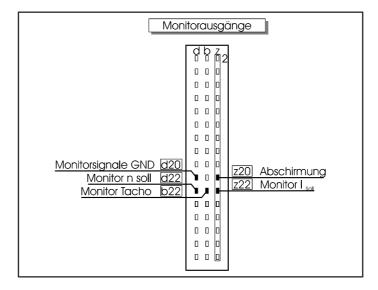
positiver Anschluss		Freigabe +
Negativer Anschluss		Freigabe -
Eingangsspannung		verpolgeschützt
minimale Eingangsspannung		12 VDC
Maximale Eingangsspannung		28 VDC
Eingangswiderstand		2 kΩ
Schaltzeiten	Freigabe	typ. 20μsec
	Sperren	typ. 100 μsec

10.1.4 Endschalter

Zwei Endschalter sichern jeweils die Endlage in positiver bzw. negativer Drehrichtung, indem der Sollwert für die betreffene Richtung gesperrt wird. Die Gegenrichtung bleibt freigegeben, so dass aus der Endlage wieder herausgefahren werden kann.

Im Normalbetrieb muss zwischen den beiden Anschlüssen für jeden Endschalter eine leitende Verbindung bestehen. Jede Unterbrechung wird als Endschalterberührung gewertet und führt zur Abschaltung der jeweiligen Drehrichtung. Die Schaltung ist also leitungsbruchsicher ausgelegt.

Hinweis: auch bei aktivierter Drehrichtungsbegrenzung ist es möglich, dass sich der Motor durch Offseteinflüsse immer noch langsam dreht. Daher müssen geeignete Zusatzmassnahmen per Hardware oder durch die übergeordnete Steuerung ergriffen werden, um ein langsames Weiterdriften in der gesperrten Richtung zu verhindern (z.B. Verstärker disable oder durch herausfahren aus der Endschalterposition).


Beschaltung siehe unter Kapitel 7.3, "Endschalter"

Anschlüsse für Endschalter in positiver Drehrichtung	Endschalter re (CW) 1	Endschalter re (CW) 2
Anschlüsse für Endschalter in negativer Drehrichtung	Endschalter li (CCW)1	Endschalter li (CCW) 2
Stromfluss durch externe Endschalter	<= 7.5 mA	
zulässiger Widerstand im Endschalter- kreis	<= 2.8kΩ	
Schaltzeiten Einschalten	ca.	20 μsec
Ausschalten	ca.	100 usec

10.2 Ausgänge

10.2.1 Monitorausgangssignale

Der Sinusverstärker stellt drei verschiedene Monitorsignale zur Verfügung. Es handelt sich dabei um den Drehzahl-Sollwert (n_{Soll}), den Drehzahl-Istwert (Tacho) sowie den Strom-Sollwert (l_{Soll}).

Monitor Solldrehzahl n _{soll}	-8 V +8 V ⁸⁾	max. 5 mA
Monitor Istdrehzahl Tacho	-8 V +8 V ⁸⁾	max. 5 mA
Monitor Sollstrom I _{soll}	-10 V +10 V ⁸⁾	max. 5 mA

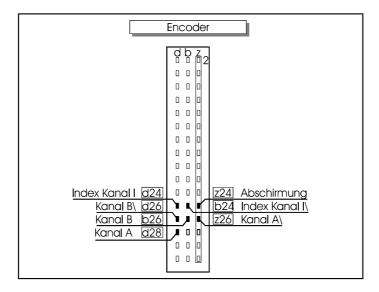
Beispiel (Siehe auch Bestellinformationen):

108313

 $\begin{array}{lll} \text{Monitor } n_{\text{soll}} = +8 \text{ V} & \text{entspricht} \approx & n_{\text{max}} = 20 \text{ 000 rpm} \\ \text{Monitor } I_{\text{soll}} = +10 \text{V} & \text{entspricht} \approx & I_{\text{max}} = 11.5 \text{ A} \end{array}$

Die Monitorsignale sind in erster Linie für die Beurteilung der Dynamik des Drehzahlreglers und nicht für quantitative Messungen bestimmt. Ein genauer Abgleich der Maximaldrehzahl sollte beispielsweise mit Hilfe der Inkrementalpulse durchgeführt werden.

An den Monitorausgängen darf keine Fremdspannung angelegt werden.


 I_{max} , n_{max}

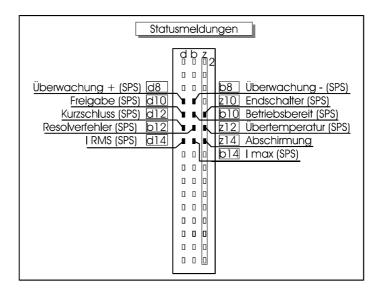
 $^{^{\}rm 8}$ 10 V bzw. 8 V entsprechen dem am Konfigurationsmodul ungefähr vordefinierten Wert

10.2.2 Inkrementalgebersignale

Handelsübliche Positioniersteuerungen verwenden zur Lageerfassung Inkremental-Encodersignale.

Im Sinusverstärker werden aus der binären absoluten Winkellage des Resolver-Digital-Converter (RDC) die Inkremental-Encodersignal abgeleitet.

Die Encodersignale stehen mit einer Auflösung von je 1024 Pulse/Umdrehung zur Verfügung.


Das Inkrementalsignal mit 1 Puls/U und einer Impulsbreite von 1/4096U.

Der im Sinusverstärker integrierte Treiberbaustein Typ AM26C31C erzeugt differentielle Signale ähnlich RS-485.

Für den externen Leitungsempfänger werden folgende Bausteine empfohlen:

Hersteller	Тур	Bezeichnung
Motorola	AM26LS32	Quad EIA-422/423 Line Receiver
Motorola	MC3486	Quad EIA-422/423 Line Receiver
TEXAS	SN75173	Quad RS-422/485 Line Receiver
TEXAS	SN75175	Quad RS-422/485 Line Receiver
TEXAS	AM26C32	Quad RS-422 Line Receiver CMOS
etc.		

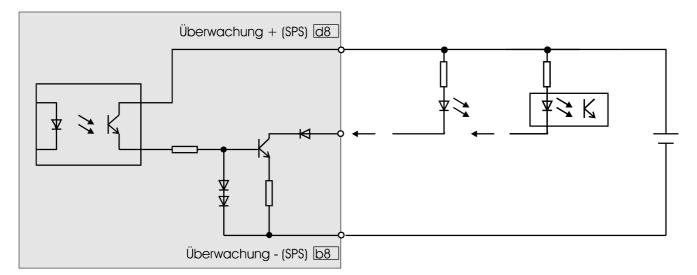
10.2.3 Anzeigen / Statusmeldungen

Um den aktuellen Betriebszustand des Sinusverstärkers an einer übergeordneten Steuerung (z.B. SPS) zu melden oder durch LED's anzuzeigen, sind 8 optoentkoppelte, digitale Signale vorgesehen.

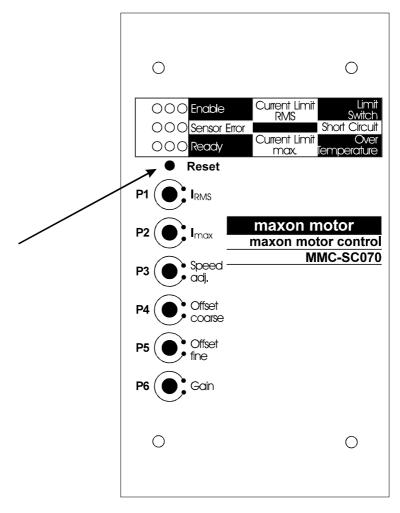
d10	Freigabe	(enable)
b10	Betriebsbereit	(ready)
z10	Endschalter	(limit switch)
d12	Kurzschluss	(short circuit)
b12	Resolverfehler	(sensor error)
z12	Übertemperatur	(over temperature)
d14	I rms	(current limit I rms)
b14	I max	(current limit I max)

Bei den Statussignalen handelt es sich um "Open-Collector" Ausgänge.

Alle Ausgänge sind im Normalzustand, d.h. ohne Fehler, durchgeschaltet. Im Fehlerfall wird der betreffende Ausgang bzw. Ausgangstransistor gesperrt. Diese Lösung ist demnach leitungsbruchsicher, d.h. auch eine Unterbrechung der Verbindung zwischen den Statusausgängen und der Steuerung führen zu Fehlermeldungen.


Da die Ausgänge galvanisch entkoppelt sind, ist für den Betrieb eine externe Hilfsspannung nötig:

Benötigte Hilfsspannung für Statusausgänge:


max. 30VDC, verpolgeschützt, I_{LAST} < 18 mA

d8	Überwachung +	(positiver Anschluss)
b8	Überwachung -	(negativer Anschluss)

Beschaltungsbeispiele:

10.3 RESET

Mit der RESET Funktion wird das Regelgerät wieder in Funktion gesetzt, nach dem es sich in Folge einer Fehlersituation selbst abgeschaltet hatte. Gleichzeitig wird die gespeicherte Fehlermeldung gelöscht.

Wenn die Ursache für die Fehlersituation noch nicht beseitigt ist, schaltet sich der Verstärker natürlich sofort wieder ab.

Der RESET kann auf zwei Arten ausgelöst werden:

- 1. manuell durch Betätigung der RESET Taste
- 2. durch kurzzeitiges Wegnehmen und wieder Einschalten der Freigabe

Auf diese Weise ist es einer übergeordneten Steuerung möglich, die Fehlermeldung zu quittieren und den Verstärker wieder in Betrieb zu setzen.

11 Fehlerdiagnose im LED Display

11.1 ENABLE

	Normal	Fehler
	Enable Current Limit RMS Switch OOO Sensor Error OOO Ready Current Limit RMS Short Circuit Current Limit RMS	Enable Current Limit Switch OOO Sensor Error OOO Ready Current Limit Short Circuit max.
Zustand	leuchtet grün	leuchtet nicht
Beschreibung	leuchtet als Bestätigung der Freigabe	Verstärker ist nicht freigegeben

11.2 Current Limit RMS

	Normal	Fehler
	Current Limit RMS Switch COO Sensor Error COO Recoy Current Limit RMS Short Circuit	Enable Current Limit Limit RMS Sensor Error Current Limit Switch Switch Current Limit RMS Short Circuit max
Zustand	leuchtet nicht	leuchtet gelb
Beschreibung		 Der Motor wird in der Effektiv- Strombegrenzung gefahren Die Ist-Motorendrehzahl ist grösser als die konfigurierte Grenzdrehzahl n_{grenz}. In diesem Fall muss der RESET Schalter betätigt werden um den Fehler zu löschen Das Motorkabel ist unterbrochen (1 Wicklung)

11.3 Limit switch

	Normal	Fehler
	OOO Incide Current Limit OOO Sensor Error OOO Recody Current Limit max.	Limit Switch Short Circuit OO Ready Current Limit Limit Switch Switch Current Limit Short Circuit Current Limit Short Circuit Current Limit Short Circuit Max.
Zustand	leuchtet nicht	leuchtet rot
Beschreibung		Endschalter aktiviert

11.4 Sensor Error

	Normal	Fehler
	Current Limit Switch Company Sensor Error Current Limit RIVIS Short Circuit Current Limit Switch	Current Limit Switch Solo Sensor Error Current Limit RMS Switch Current Limit Switch Current Limit RMS Short Circuit Current Limit RMS
Zustand	leuchtet nicht	leuchtet rot
Beschreibung		Unterbruch in der Resolverleitung
Bemerkung		RESET Schalter muss betätigt werden um den Fehler zu löschen

11.5 Short Circuit

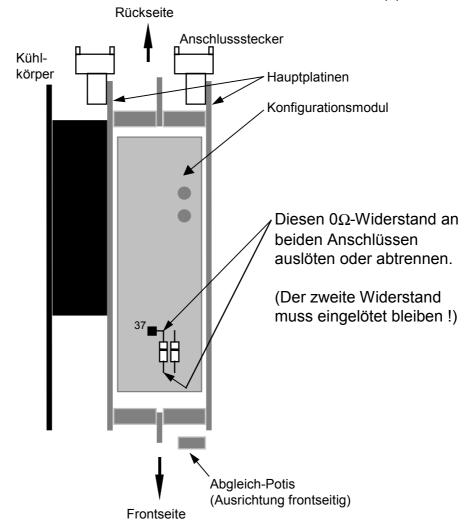
	Normal	Fehler	
	OOO Fnable Current Limit RMS OOO ensor Error OOO Ready Current Limit Switch Current Limit Current Limit MOX	O C Enable Current Limit RIVIS Switch O C Ready Current Limit RIVIS Short Circuit	
Zustand	leuchtet nicht	leuchtet rot	
Beschreibung		Kurzschluss am Motoranschluss	
Bemerkung	RESET Schalter muss betätigt wo um den Fehler zu löschen		

11.6 Ready

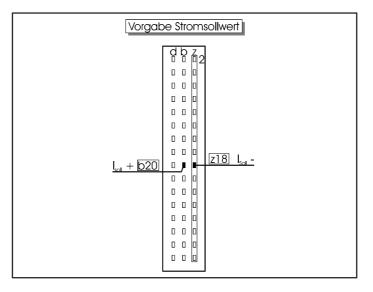
	Normal	Fehler
	OOO Enable Current Limit Limit RMS Switch	OOO Enable Current Limit RIVIS Switch
	Sensor Error Short Circuit	QOO Sensor Error Short Circuit
	Ready Suite II Limit Over max. Temperature	OOO Ready Current Limit Over
Zustand	leuchtet grün	leuchtet nicht
Beschreibung	Gerät ist betriebsbereit	
	alle Versorgungsspannungen sind aktiv	

11.7 Current Limit max.

	Normal	Fehler
	OOO Enable Current Limit Limit Switch	OOO Enable Current Limit Limit Switch
	Short Circuit Cop Ready Current Limit Max. Current Limit Cver	OGO Sensor Error Current Limit Over
Zustand	leuchtet nicht	leuchtet gelb
Beschreibung		Der Motor wird in der Maximal- Strombegrenzung betriebenAlle Wicklungen sind unterbrochen


11.8 Over Temperature

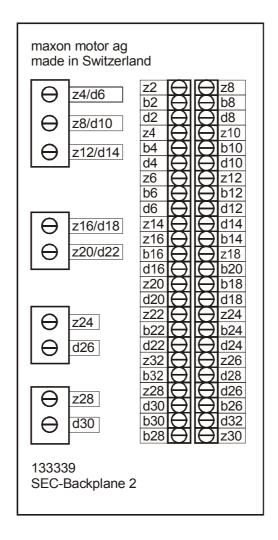
	Normal	Fehler
	OOO Enable Current Limit L RMS Sw	imit OOO Enable Current Limit Limit RMS Switch
	OOQ Sensor Error Short Cir	cuit OO,Q, Sensor Error Short Circuit
	OCO == dy Current Limit max. [empera	wer Current Limit Over
Zustand	leuchtet nicht	leuchtet rot
Beschreibung		Der Verstärker ist thermisch überla- stet


12 Konfiguration als Stromregler

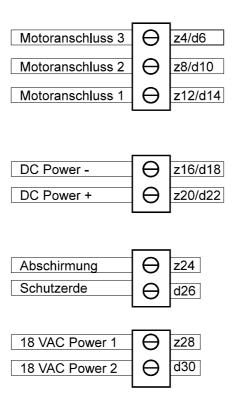
Standardmässig werden alle Sinusverstärker als Drehzahlregler ausgeliefert. Für die Verwendung mit einer übergeordneten Lagereglereinheit muss der Verstärker jedoch üblicherweise als Stromregler konfiguriert werden (Momentenregelung).

Für diese Anpassung ist eine Drahtbrücke (0Ω -Widerstand) auf dem Konfigurationsmodul zu entfernen. Das Konfigurationsmodul befindet sich auf der Unterseite des Sinusverstärkers zwischen den beiden äusseren Hauptplatinen.

12.1 Externer Stromsollwert ± 10 VDC


□ Beachte:

- Bei Verwendung des Sinusverstärkers als Stromregler erzeugt der angeschlossene Motor ein Drehmoment proportional zum eingestellten Sollwert. Ist das Drehmoment höher als die Reibkräfte, läuft die Motordrehzahl hoch (falls keine übergeordnete Steuerung das verhindert), bis die konfigurierte Grenzdrehzahl erreicht wird. Der Servoverstärker erkennt den Fehler und schaltet sich ab.
- Bei Verwendung des Sinusverstärkers als Stromregler muss der Stromsollwert über den Eingang b20 (I_{soll} +) und z18 (I_{soll} -) vorgegeben werden, dabei darf der Drehzahlsollwert Eingang d18 (n_{soll} +) und b18 (n_{soll} -) nicht beschaltet sein.


13 Klemmenbelegung (133339)

Die Rückwandplatine (133339) ist ein Zubehörteil, das die Verdrahtung erleichtert. Die Rückwandplatine kann in ein 19"-Rack eingebaut werden.

13.1 Übersichtszeichnung

13.2 Klemmen "Leistung"

13.3 Klemmen "Signale"

Abschirmung	z2		1	Z8 Abschirmung
Endschalter re (CW) 2	b2	\bowtie		b8 Überwachung U- (SPS)
Endschalter re (CW) 1	d2	\bowtie	2	
	+	∇		
Abschirmung	z4	\Box	4	z10 Endschalter (SPS)
Endschalter li (CCW) 2	b4	Θ	5	b10 Betriebsbereit (SPS)
Endschalter li (CCW) 1	d4	igoplus	6	d10 Freigabe (SPS)
Schutzerde	z6	Θ	7	
Freigabe -	b6	Θ	8	b12 Resolverfehler (SPS)
Freigabe +	d6	Θ	9	d12 Kurzschluss (SPS)
Abschirmung	z14	Θ	10	d14 I RMS (SPS)
-12 V Ext.	z16	Θ	11	(SPS) b14 I MAX (SPS)
GND Ext.	b16	Θ	12	z18 I soll -
+12V Ext.	d16	Θ	13	⊖ b20 I soll +
Abschirmung	z20	Θ	14	D18 n soll -
Monitor GND	d20	Θ	15	d18 n soll +
Monitor Isoll	z22	Θ	16	
Monitor Tacho	b22	Θ	17	b24 Index Kanal \I
Monitor nsoll	d22	\bigcirc	18	d24 Index Kanal I
Res_sin -	z32	igoplus	19	⊝z26 Kanal ∖A
Res_sin +	b32	igorplus	20	d28 Kanal A
Abschirmung	z28	Θ	21	⊖ d26 Kanal \B
Resolver Primär	d30	Θ	22	⊖ b26 Kanal B
GND Primär	b30	Θ	23	d32 Res_cos -
Reserve	b28	$oxed{\Theta}$	24	☐ z30 Res_cos +

14 Bestellnummern

Der Sinusverstärker ist mit Hilfe des Konfigurationsmodules auf den verwendeten Motor und Resolver genau abgestimmt. Dadurch erübrigen sich schwierige Abgleicharbeiten.

Damit diese Eigenschaften aber gewährleistet sind, muss zum verwendeten Motor der zugehörige Sinusverstärker bestellt werden.

Steuerung	Motor	Resolver	n _{max} ¹	I _{max} 1
108313	118888	166488	20'000 min ⁻¹	11.5 A
108314	118889	166488	20'000 min ⁻¹	7.7 A
108315	118890	166488	10'000 min ⁻¹	3.7 A
108316	118894	133405	20'000 min ⁻¹	14.0 A
108317	118896	133405	10'000 min ⁻¹	9.6 A
108320	118899	133405	3'000 min ⁻¹	2.5 A
136740	136198	133405	10'000 min ⁻¹	14.0 A
136741	136208	133405	10'000 min ⁻¹	14.0 A

Nicht im Lieferumfang inbegriffen

Zubehör	
108318	19"-Frontplatte,
133379	Stromversorgung 115/230VAC, 2 x 35VDC, 1 x 24VDC, 1 x 18VAC, CE konform
107891	Buchsenleiste 15-pol., Tauchlötanschluss
134800	Buchsenleiste 48-pol., Tauchlötanschluss
133339	Rückwandplatine mit Schraubklemmen (Backplane)

alle Zubehörteile ab Lager lieferbar

_

¹ Die Drehzahl und der Motorenstrom werden auch durch die Grenzwerte des Motors bestimmt. (Siehe Motordaten im maxon Katalog)

15 Tips zur EMV-gerechten Installation

15.1 Verbindungskabel

Grundsätzlich müssen Motor-, Sensor- und Signalleitungen als abgeschirmte Leitungen kopplungsarm und ohne Schleifenbildung verlegt werden.

15.2 Motoranschluss

Um Störaussendungen zu minimieren, ist ein abgeschirmtes Kabel zu verwenden. Der Schirm muss an der Verstärkerseite verbunden und ausserdem auf der Motorseite möglichst über das Steckergehäuse mit dem Motorgekoppelt werden.

15.3 Resolveranschluss

Das Resolverkabel muss abgeschirmt sein.

Die Paare "cos+/cos-", "sin+/sin-" und "Resolver Primär/GND Primär" müssen je verdrillt und paarweise abgeschirmt sein. Auf der Resolverseite dürfen die Abschirmungen nicht auf das Steckergehäuse (=Motorgehäuse) gelegt werden um Erdschleifen zu verhindern.

15.4 Inkrementalgebersignal

Die Inkrementalgeberleitung muss abgeschirmt sein. Die Paare "Kanal A, Kanal A\", "Kanal B, Kanal B\" und "Index Kanal I, Index Kanal I\" müssen je verdrillt und paarweise abgeschirmt sein. Auf der Lagereglerseite dürfen die Abschirmungen nicht verbunden werden um Erdschleifen zu verhindern.

15.5 Leitungen für analoge Signale

Signalleitungen für empfindliche analoge Signale müssen ebenfalls geschirmt werden.

Der Schirm der Signalleitungen soll einseitig, auf der Seite des Sinusverstärkers, geerdet werden. Mit Vorteil wird die Signalleitung auf der Seite des Erdungspunktes mit drei Windungen durch einen Ferrit-Ringkern (Kernmaterial mit μ_r < 500) geschlauft.

15.6 Leitungen für Statussignale

Leitungen für Statussignale brauchen in der Regel nicht abgeschirmt zu werden. Sie können aber unter Umständen dennoch als Empfangsantenne für schnelle, transiente Störsignale funktionieren. Um dieser Antennenwirkung vorzubeugen, müssen die betroffenen Leitungen auf der Seite des Sinusverstärkers mit je 3 Windungen durch einen Ferrit-Ringkern (Kernmaterial mit μ_r < 500) geschlauft werden. Dieser Umstand muss von Fall zu Fall überprüft und abgeklärt werden.

15.7 Allgemeine Hinweise

15.7.1 HF-Abblockung

Generell bringt die **HF-Strom Abblockung mittels eines Ferrit Ringkernes** in einer Leitung (Netz-, Signaloder Datenleitung) eine Verbesserung der Störfestigkeit gegenüber externen Störeinkoppelungen. Dies zu erkennen, ist oft nützlich und hilfreich bei der Entstörung einer Anlage, welche im praktischen Betrieb mangelnde Störfestigkeit aufweist.

15.7.2 Schirmerdung

Die Schirmerdung ist der ausschlaggebende Faktor. Die **Erdimpedanz** muss unbedingt **so niederohmig wie technisch möglich** gemacht werden.

In der Praxis zeigen abgeschirmte Leitungen mit mangelhafter Schirmerdung sehr oft schlechtere Störfestigkeitsresultate als ungeschirmte Leitungen.

Sinnvollerweise wird nur die Gesamtanlage, bestehend aus allen Einzelkomponenten (Motor, Resolver, Sinusverstärker, Lageregler, Netzteil, EMV-Filter, Verkabelung etc.), einer EMV-Prüfung unterzogen, um damit einen störungsfreien CE-konformen Betrieb sicherzustellen.