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Curve fitting of the primary parameters 

As pointed out in Part 1, if we knew Rω, Lω, Gω, and Cω we would be ready to start our simulation. Let's look at how the 

primary parameters vary as a function of frequency. See the first four columns of Table 1 below for values of the primary 
parameters for a typical twisted pair telephone cable. (A more extensive version of this table and tables for other gauges 
and temperatures can be found in Reference 3 and Reference 4. See References 5, 6, or 7 for an explanation as to why 
the parameters vary with frequency and how to go about deriving the equations for that frequency dependence.) 
 
The general behavior of the primary parameters versus frequency is known.  
 
Capacitance is dependent only on the dielectric constant of the insulation. This is a consequence of the fact that the 
conductor surface can be regarded as an equal potential surface up to very high frequencies and, as long as the wave 
length of the signal in the insulation is long with respect to the thickness of the insulation, the shape of the electric field is 
independent of frequency. 
 
The ratio ωCω/Gω is related to loss tangent, which is known to vary slowly with frequency. 
 
Resistance is a constant at dc and low frequency. At high frequency it increases proportionately to the square root of the 
frequency as a consequence of skin effect and proximity effect. 
 
Inductance is constant at dc and low frequency and is constant, but smaller at very high frequency. It is known to have the 
form of a sum of two parts. One part is a constant. The other part decreases inversely of the square root of frequency at 
high frequency due to skin effect. 



 

 
Primary Parameter Data 

Primary Parameter 
Approximations 

Primary Parameter 
Errors 

Freq R L G C R L G C R L G 

Hz Ω/Kft mH/Kft μS/Kft nF/Kft Ω/Kft mH/Kft μS/Kft nF/Kft Ω/Kft μH/Kft nS/Kft 

1 52.50 0.1868 0.000 15.72 52.50 0.1868 0.000 15.72 0.00 0.00 -0.05 

10 52.50 0.1868 0.000 15.72 52.50 0.1868 0.000 15.72 0.00 0.00 -0.40 

100 52.50 0.1868 0.003 15.72 52.50 0.1868 0.003 15.72 0.00 0.01 0.06 

500 52.50 0.1867 0.012 15.72 52.50 0.1868 0.012 15.72 0.00 -0.06 0.08 

1000 52.51 0.1867 0.022 15.72 52.50 0.1867 0.022 15.72 0.01 -0.02 0.22 
2000 52.52 0.1866 0.040 15.72 52.50 0.1866 0.040 15.72 0.02 -0.03 0.19 

5000 52.55 0.1863 0.088 15.72 52.51 0.1864 0.088 15.72 0.04 -0.08 -0.34 

10 K 52.64 0.1859 0.162 15.72 52.56 0.1859 0.161 15.72 0.08 -0.05 0.54 
20 K 52.91 0.1850 0.295 15.72 52.74 0.1851 0.295 15.72 0.17 -0.07 -0.09 

50 K 54.32 0.1814 0.655 15.72 53.93 0.1824 0.655 15.72 0.39 -1.00 0.12 

100 K 58.41 0.1770 1.197 15.72 57.64 0.1782 1.197 15.72 0.77 -1.20 0.10 
200 K 69.89 0.1721 2.188 15.72 67.98 0.1716 2.188 15.72 1.91 0.53 0.46 
300 K 81.73 0.1683 3.113 15.72 78.81 0.1669 3.113 15.72 2.92 1.39 0.16 

500 K 102.59 0.1623 4.855 15.72 98.37 0.1609 4.855 15.72 4.22 1.36 0.26 

1 M 141.30 0.1543 8.873 15.72 136.95 0.1537 8.873 15.72 4.35 0.62 0.15 
2 M 196.03 0.1482 16.217 15.72 192.88 0.1479 16.217 15.72 3.15 0.25 0.38 

5 M 304.62 0.1425 35.989 15.72 304.62 0.1426 35.989 15.72 0.00 -0.08 0.00 

 
Table 1. Primary Parameters for 24-gauge telephone cable. 

 
The following constants are from Table 1: 
 ω2  =  highest frequency in Table 1  (radians per second) 
 ω1  =  second highest frequency in Table 1 
 Cdc  =  capacitance at lowest frequency  (nanofarads per 1000 feet) 
 Gdc  =  conductance at lowest frequency (micro Siemens per 1000 feet) 
 G2  = conductance at ω2 
 G1  = conductance at ω1 



 Rdc  =  resistance at lowest frequency  (ohms per 1000 feet) 
 Rac  =  resistance at ω2 
 Ldc  =  inductance at lowest frequency  (millineries per 1000 feet) 
 
The values of the constants are: 
 ω2  =  2 π x 5 x 106  rad/sec 
 ω1  =  2 π x 3 x 106  rad/sec 
 Cdc  = 15.72 nF/Kft 
 Gdc  = 0.0005 μΩ-1/ Kft  (or a small positive conductance for dc purposes). 
 G2  = 35.989 μΩ-1/ Kft 
 G1  = 16.217 μΩ-1/ Kft 
 Ldc  = 0.1868 mH/Kft 
 Rdc  = 52.50 Ω/Kft 
 Rac  =  304.62 Ω/Kft 
 
In the table, G at the lowest frequency is 0.000 μΩ-1/ Kft. We need a positive number because SPICE may starts each run 
with a dc operating point analysis and letting Gdc be zero will result in an attempt to divide by zero. So, we choose for 
Gdc the largest value that would round down to 0.000 μΩ-1/ Kft which is 0.0005 μΩ-1/ Kft. 
 
Equations of the following form match the known behavior at low and high frequencies and fit the data from Table 1 well. 
 
3a. Cω = Cdc  

 
This one is obvious. The data in the table is independent of frequency and so is this equation. 
 

3b.  

 



3c.  
 
For ω << ωR , this is obviously a constant equal to Rdc. For high-enough frequency, it increases proportionately to the 
square root of frequency. We select Rdc as the resistance at the lowest frequency available and then we select ωR to 
make this equation agree with Table 1 at the highest available frequency.  
 

4a.  
 

4b.  
 
Obviously, if k = 0.5, then the ratio ωCω/Gω varies slowly (none at all in fact). We will select G2 to be the conductance at 
the highest frequency in the table and ω2 to be the highest frequency in the table. By the way the equation is set up, it 
must be exactly correct at the highest frequency in the table. We will select k so that the equation is also exactly correct 
for the second-highest frequency in the table. Upon evaluation, the equation is found to be in error by less than 0.01 μΩ-1/ 
Kft at all frequencies. 
 
 



5a.  
 
where: 
 

 L∞ = 133.0 μH/Kft 

 A  = 1.6 
 ωL = 2 x π x 161000 
 

If ω << ωL , then the equation is equal to Ldc. If ω >> ωL then the variable part of the inductance decreases inversely to 
the square root of frequency. The worst error is 2.2 μH at 500 kHz.  
 
There are several combinations of L∞, A, ωL that give equal results. These values were found by trial and error. Given 
several combinations with equal accuracy, then favor the one that minimizes the difference between Ldc and L∞. 
 
Laplace transforms are expressed as functions of s. During frequency domain simulation, s is replaced by jω and 
evaluated. "j" is the square root of -1. However, the functions for Rω, Lω, Gω, and Cω vs. ω are real valued functions of a 
real variable. Noting that -s2 = ω2 is real and positive, every occurrence of ω in Rω, Lω, Gω, and Cω will be replaced with (-
s2)1/2. In cases of ωn where n is even, ωn can be replaced with   (-s2) n/2. 
 
The accuracy of our curve fitting attempts are shown in Table 1. The first four columns are the given data. The next 4 
columns are the results of evaluation of our approximating equations. The last three columns give the errors. Errors for 
capacitance have been omitted since they are identically zero. Note that the inductance and conductance errors are in 
smaller units than the corresponding data entries.  
 
Of course, you don't really care how well you match the ohms per kilo foot. What you care about is the dBs per kilofoot 
and nanoseconds per kilofoot. In other words, we want to know how well we match the secondary parameters. The 
secondary parameters are shown in Table 2. The secondary parameters can be computed from the primary parameters 
and vice versa. The last secondary parameter, the delay per unit length, can also be expressed as phase shift per unit 
length or velocity. 



 
 

 

Secondary Parameters from 
Data 

Secondary Parameter 
Approximations 

Secondary Parameter 
Errors 

Freq Z α delay Z α delay Z α delay 

Hz Ω ° 
dB/Kf

t μs/Kft Ω ° 
dB/Kf

t μs/Kft mΩ ° 
dB/Kf

t ns/Kft 

1 23055 -45.0 0.01 256.3 23055 -45.0 0.01 256.2 2 -0.02 0.00 69.3 

10 7291 -45.0 0.04 81.05 7291 -45.0 0.04 81.03 0 -0.01 0.00 16.3 

100 2305 -44.9 0.14 25.65 2305 -44.9 0.14 25.65 0 0.00 0.00 -0.1 

500 1031 -44.7 0.31 11.52 1031 -44.7 0.31 11.52 -1 0.00 0.00 0.0 

1000 729.22 -44.4 0.44 8.19 729.16 -44.4 0.44 8.19 65 0.00 0.00 0.7 

2000 515.88 -43.7 0.61 5.86 515.79 -43.7 0.61 5.86 86 0.00 0.00 0.9 

5000 327.21 -41.8 0.94 3.83 327.10 -41.8 0.94 3.83 107 0.00 0.00 1.1 

10 K 233.65 -38.7 1.25 2.86 233.48 -38.7 1.25 2.86 169 -0.01 0.00 1.6 

20 K 171.04 -33.1 1.60 2.25 170.81 -33.1 1.60 2.25 230 -0.04 0.00 2.0 

50 K 126.26 -21.8 2.01 1.84 126.23 -21.6 2.00 1.84 34 -0.18 0.02 -1.8 

100 K 112.77 -13.9 2.32 1.72 112.92 -13.6 2.28 1.73 -141 -0.23 0.04 -3.9 

200 K 107.26 -8.95 2.87 1.67 106.98 -8.75 2.79 1.66 287 -0.20 0.07 3.5 

300 K 105.15 -7.22 3.40 1.64 104.62 -7.03 3.30 1.63 524 -0.19 0.11 7.5 

500 K 102.62 -5.69 4.37 1.61 102.13 -5.50 4.20 1.60 496 -0.18 0.16 7.3 

1 M 99.60 -4.14 6.18 1.56 99.37 -4.03 6.00 1.56 227 -0.11 0.18 3.3 

2 M 97.36 -3.00 8.76 1.53 97.27 -2.96 8.63 1.53 90 -0.04 0.13 1.4 

5 M 95.32 -1.94 13.90 1.50 95.34 -1.94 13.90 1.50 -25 0.00 0.00 -0.4 
 

Table 2. Secondary Parameters 



Expressing the primary line parameters in Laplace Transform notation yields: 
 

6a.  
 

6b.  
 

6c.  
 

6d.   
 
We will insert these equations into the expressions for Z(s) and F(s). 
 

Other approximations 
The approximations that we have used are merely convenient and are not unique. There are instances in the literature, such as 
Reference 8, where the primary parameters are expressed as other functions of frequency. These functions can be used instead of 
the approximating functions introduced in this article.  
 
There are a few points to check though. The function must be a function of ω which is in radians per second. Reference 8 offers up 
its approximations as functions of KHz. 
 
There may be a necessity to convert the units. For example, on inductance, reference 3 uses mH/Kft, reference 4 uses mH/mile and 

reference 8 uses μH/km.  



 

Extensibility to higher frequency 
Is reasonable to presume that these simple functions for the primary parameters can be extended beyond the highest 
frequency in the table?  The answer is yes, probably for C, R, and G because curves fit very well and in the case of R, the 
data it is well into the skin effect limited region of the curve. However in the case of L the data does not include high 
enough frequencies to reach the part of the curve where it flattens out at high frequency. We don't know L∞, the high 
frequency limit for inductance. And since the high frequency inductance sets the high frequency characteristic impedance 
per the equation: 
 

7a.  
 
For the best results, it is desirable to know L∞. If you have other knowledge of Z∞ and use that to compute L∞ then the 
model might work well at higher frequencies. Otherwise, no promises! 
 
In the last part of this article we will put those approximating equations into the two-model for a transmission line and 
produce a sub-circuit that is ready to use.  
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Resources 
1. Linear Technology Corporation LT Spice IV download available with a very generous license. 
 http://www.linear.com/designtools/software/ltspice.jsp 
2. Yahoo user's group 
 http://tech.groups.yahoo.com/group/LTspice/ 
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