
 

 

 
Morphing the Circuit 
 

2 Fω 1

Fω 21 VoZi

Zo
D2

A1
A2

D1

P2

P1

Z1ω

Z2ω

Vg Vi

Vbo Vbi

Vfi
IoutIin Vfo

 
Figure 1:  
 

 
While we could use the circuit shown in figure 1 directly, it is not optimal for SPICE.   
SPICE has some idiosyncrasies: 
 
 Current sources are better than voltage sources. 
 
 Laplace transform elements work better if they approach zero at high frequencies. 
 
 An inductor with an internal series resistance works better than a separate inductor and resister. 
  
 SPICE works better at simulating balanced circuits if the simulated circuit is balanced. 
 
The first three are documented, the last is not, but has been observed.  We speculate that certain elements in the sparse 
matrix cancel exactly in one case and not in the other. 



 

 

 
Currents are proportional to voltages.  Voltage sources can be replaced with current sources.  Voltage dependent sources 
can be replaced with current dependent sources.  By applying some circuit theory transformations, the circuit in figure 1 
can be converted to the circuit in fig. 12.   
 
Step 1: redraw the circuit into the more symmetric form shown in fig. 2. 
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Figure 2: The circuit redrawn to emphasize the symmetry. 
 



 

 

Step 2: replace voltage doubler A1 and series impedance Z1 with double current sources G3 and G5 and Z1 in shunt.  
Likewise A2 and Z2 in series have been replacing by G4 and G6 and Z2 in shunt.  The trans-conductance of G3 through 
G6 is 1/Z.  The result is shown in fig 3.  The reason for using double current sources instead of one current source with 
twice the gain will become apparent in a few steps. 
 

Vo

ZoP2

Iout

Vfi Vfo

F

1/Z

I2I4

1/Z
G6 G4 Z2

Vi

F

Zi

Iin

VbiVbo
Vg

1/Z 1/Z

I1 I3

P1
G5G3Z1

1 1

D2D1

 
Figure 3. Voltage doublers replaced by transconductance amplifiers. 
 
 
 



 

 

Step 3: replace the difference amplifier D2 by transimpedance amplifiers H2 and H4 in series.  D2 produced the output  
 
 Vfi = Vi � Vbo.  
 
It should be obvious that  
 
 I1 = Vi / Z  
 I3 = Vbo / Z.   
 
Solving for the voltages yields  
 
 Vi    = (Z) I1  
 Vbo = (Z) I3  
 
The series combination of H2 and H4 simply produces Vfi = Vi � Vbo, which is the same as the output of D2.  Likewise, 
D1 has been replaced by the series combination of H1 and H3.  The result is shown in fig 4. 
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Figure 4. Difference amplifiers replaced by transimpedance amplifiers. 
 



 

 

Step 4: insert a zero volt source, V6, into a circuit branch that happens to carry the current I2-I4.  The series combination 
of H1 and H3 produces the signal I2-I4.  A single transimpedance amplifier, H6, controlled by I6, the current through V6, 
can replace the series combination of H1 and H3.  Similarly, H5 replaces H2 and H4.  The reason for the doubled current 
sources instead of a current source with twice the gain is so that the branch currents I1 - I3 and I2 - I4 exist.  The 
voltages Vbo, Vbi, Vfi and Vfo are no longer used in any expression and will be suppressed. 
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Figure 5.  Voltage difference replaced with current difference. 
 



 

 

Step 5: decrease the transimpedance gain of H1, H2, H3 and H4 by Z to 1 ohm and increase the transconductance gain 
of G3, G4, G5 and G6 by Z to 1/ohm.  The gain from H6 to Vi is unchanged as is the gain from H5 to Vo. The gain of G3, 
G4, G5 and G6, which is now unity, will be suppressed in the following figures.  The result is shown in fig 6. 
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Figure 6. Gains normalized. 



 

 

Step 6: replace the propagation function P1 by transconductance amplifier G7 driving a 1 ohm resister.  Replace P2 by 
G8 and a 1 ohm resister.  The result is shown in figure 7. 
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Figure 7.  Propagation functions replaced with transconductance amplifiers. 
 



 

 

Step 7: replace the impedance Z1 by transconductance amplifier G1.  Likewise replace Z2 G2. 
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Figure 8.  Characteristic impedences replaced with transconductance amplifiers. 
 
 

There are two problems with the circuit of fig. 8.  SPICE requires that Laplace elements roll off to zero at high frequency.  
G1 and G2 approach a constant.  G7 and G8 do go to zero, but not quickly enough. 



 

 

Step 8 Increase the roll-off of G7 by dividing its Laplace transform by ( 1 + s Lcon).  Restore the frequency response by 
adding an inductor, Lcon, in series with the 1 ohm resister that G7 drives. Do the same thing to G8 and the 1 ohm resister 
that it drives. 
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Figure 9.   
 



 

 

Step 9: Since, G1 in the previous figure approaches a constant, subtract that constant out of G1.  What is left will go to 
zero at high frequency.  The constant removed happens to be a real valued conductance.  Add that conductance back by 
adding a simple resister in shunt with G1.  Likewise, subtract the same constant out of G2 and add it back as a shunt 
resister. 
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Figure 10.  
 



 

 

Step 10: absorb the 1Ω resister that was in series with Lcon into Lcon as an internal series resistance. 
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Figure 11 
 
 
This circuit is now SPICE friendly and can be simulated directly, but it is not balanced.  If you are simulating an 
unbalanced trans,ission line, like a coaxial cable, then you are done.  If you simulating a balanced transmission line like a 
twisted pair, there are a few more steps. 



 

 

Step 11: change the input source from an unbalanced voltage source to a balanced current source driving a split resister 
with the center point grounded.  The load resistance has also been split with the center point grounded.  The load and 
source have been grounded because SPICE requires a path to ground for all nodes.   
 
G8 gets its entire signal from V5 which does not occupy a balanced place in the circuit.  G7 gets its entire signal from V6 
which likewise does not occupy a balanced position in the circuit.   Add V7 as a mirror image to V5 and get half of the 
signal for G8 from V5 and half from V7.  Likewise add V8 as a mirror to V6 and get half the signal for G7 from V6 and half 
from V8.  (Dear reader, we haven't dreamed this up as an academic exercise; we had a real problem that would not 
simulate properly until we made this modification).  

Iout+Vi/2

Zi/2

Iin

Ig G

(0.5Ω)I8

0I5

Z∞
T

V5

(0.5Ω)I6
H6

0

I7
V7

Zi/2

-Vi/2

+Vo/2

Zo/2

G

(0.5Ω)I7

0 I6

Z∞
T

V6

(0.5Ω)I5

H7

H5

0

I8
V8 Zo/2

-Vo/2

T(s) =
1 + s Lcon

-xγ
e

G =            -1
Z∞Z
1

H8

Figure 12 
 



 

 

 
The circuit is now in its final, balanced SPICE ready form.  But SPICE doesn't use the mathematical symbols that we have 
been using.  Here then, are the parameter statements and Laplace expressions in their actual SPICE form. 
 
This is the parameter statement that establishes the constants.  Note, in a .param statement, ** means exponentiation. 
 
.param 
+ Kft=1  ; 1000 feet 
+ Lcon=1n 
+ C=15.72e-9   Gdc=0  Rdc=52.50   Ldc=0.1868e-3      ; dc values 
+ F2=5e6       G2=36u Rac=304.62  W2=6.28318*F2      ; highest frequency values 
+ F1=3e6       G1=23u                                ; second highest frequency values 
+ WR=W2*(Rdc**2)/(((Rac**4)-(Rdc**4))**0.5)          ; resistance term 
+ k=Log(G2/G1)/Log(F2/F1)/2                          ; conductance exponent 
+ Zinf=(Linf/C)**0.5        Yinf=1/Zinf 
+ Ldel=(Ldc-Linf) 
+ Linf= 0.133e-3    A=1.6     wL=6.28318*161000      ; inductance terms 
 
This is the Laplace expression for G7 and G8.  Note, in a Laplace expression, ^ means exponentiation. 
  
Laplace=Exp(-Kft*((((Rdc*(1-(s/wR)^2)^.25)+s*(Linf+Ldel/(1+A*((-(s/wL)^2)^.5)-(s/wL)^2)^.25))*(Gdc+G2*( -
(s/w2)^2)^k+s*C))^.5))/(s*Lcon+1) 
 
This is the Laplace expression for G1 and G2. 
 
Laplace=(((((Gdc+G2*(-(s/w2)^2)^k)+s*C)/((Rdc*(1-(s/wR)^2)^0.25)+s*(Linf+Ldel/(1+A*((-(s/wL)^2)^0.5)-(s/wL)^2)^0.25)))^0.5)) -Yinf  
 



 

 

 
 
 

The Transfer Function of a Transmission Line with Arbitrary Load and 
Source Impedances 

 
Solving a circuit from the inside out 
 
Usually, we assume an input voltage and then solve for the other node voltages.  After that linearity assures us the all the 
voltages are proportional to the input voltage.  But there is nothing special about input node.  You can start with any 
node and assume a voltage on it and then solve for all the other node voltages.  This is especially useful when there is a 
loop in the signal path.  If you work from the input you usually wind up with a set of simultaneous linear equations to 
solve.  But sometimes you can pick a node on the loop and the problem simplifies. 
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Canonical two port equivalent of a transmission line. 
 
For the circuit in fig. 1 we will select Vfi, the input to the P2 block, as the independent variable.  From that we can directly 
compute all the node voltages and branch currents.  If that doesn�t seem mathematically sound, think of it this way: you 
have a variable source and a voltmeter.  Your voltmeter is connected to Vfi and the variable source is connected at Vg.  



 

 

The source has no voltage readout and the voltmeter can only readout Vfi.  So, you vary the input source until the 
voltmeter reads 1 volt.  You then apply circuit theory and you discover that in this case you can then compute all the 
node voltages and branch currents. 
 
Once we have an equation for Vg as a function of Vfi, we can solve that equation for Vfi as a function of Vg.  We can 
substitute that expression for Vfi in all the other equations for node voltage or branch current and we will have the 
traditional solutions without ever setting up or solving any simultaneous equations.  
 
Definitions: 
 Γ1 ≡ (Zi  - Z1 )  / ( Z1 +Zi )   
 Γ2 ≡ (Zo - Z2 ) /  ( Z2 +Zo )    
 δ ≡ ( 1 -Γ1Γ2F² )  
 Y1 ≡ 1/Z1 
 Y2 ≡ 1/Z2  
 
useful combinations 
 (1 +Γ1)  = (2)(Zi ) / ( Zi +Z1 )   
 (1 +Γ2)  = (2)(Zo) / ( Zo +Z2) 
 (1 -Γ2)  = (2)(Z2) / ( Z2 +Zo)  
 (1 -Γ1)  = (2)(Z1) / ( Z1 +Zi )  
 Zi Y1  = (1 +Γ1) / (1 -Γ1)    
 
The output of P2 is just F times its input. 
 
 Vfo  =  (F)Vfi 
 
The output, Vo, is determined by the gain of A2 and the voltage divider created by Z2 and Zo. 
 
 Vo = (2 Vfo) [ Zo / (Zo +Z2) ] 
  = (1 +Γ2)(F) Vfi 
 



 

 

The output current, Iout, can be determined by the voltage drop across Z2. 
 
 Iout = [(2Vfo) -Vo] / Z2 
  = [2(F)Vfi -(1 +Γ2)(F)Vfi] Y2 
  = (F) [2 -(1 +Γ2)] Y2 Vfi 
  = (F) (1 -Γ2) Y2 Vfi 
 
The output of D1 is determined from its inputs Vo and Vfo. 
 
 Vbi  =  Vo -Vfo 
  =  (1 +Γ2)(F)Vfi -(F)Vfi 
  =   (Γ2F)Vfi  
 
The output of P1 is just F times its input. 
 
 Vbo =  (F) Vbi  
  =  (Γ2F²)Vfi 
 
The output of D2 is determined from Vi and Vbo. 
 
 Vfi  =  Vi -Vbo 
 
This can be solved for Vi. 
 
 Vi = Vfi +Vbo 
  =  Vfi +(Γ2)(F²)Vfi  
   = ( 1 +Γ2F² ) Vfi 
 
The input current, Iin, can be determined by the voltage drop across Z1. 
 



 

 

 Iin  =  (Vi -2Vbo)/Z1 
   = [( 1 +Γ2F² )Vfi -2(Γ2F²)Vfi ] Y1 
  =  Y1 Vfi( 1  -Γ2F²) 
 
Vg can be determined from Vi and Iin. 
 
 Vg  = Vi +(Zi)Iin 
  = ( 1 +Γ2F² ) Vfi +( 1 -Γ2F²) Zi Y1 (Vfi) 
  = [(1 +Γ2F²) +(1 -Γ2F²)(1 +Γ1) / (1 -Γ1)] (Vfi) 
   = 2(Vfi)( 1 -Γ2F²) / (1 -Γ1)  
 
This can be solved for Vfi 
 
 Vfi =  (Vg/2)(1 -Γ1) / (1 -Γ1Γ2F²) 
  = (Vg/2)(1 -Γ1) / δ 
 
Substituting for Vfi in selected equations gives: 
 
 Vi = (Vg/2) ( 1 +Γ2F² ) (1 -Γ1)/δ 
 Vo = (Vg/2) (1 +Γ2)(F)(1 -Γ1)/δ  
 Vo/Vi = (F)(1 +Γ2)/( 1 +Γ2F² )   
 Iout = (Y2 Vg/2) (F) (1 -Γ2) (1 -Γ1) / δ 
 Iin =  (Y1 Vg/2) (1 -Γ1)( 1 -Γ2F²)/δ 
 
We have now solved the circuit without ever solving or even creating simultaneous equations. 
 



 

 

Interpretation  
 
Let's see what these equations tell us in the context of transmitting brief pulses.  We will assume that the transmission 
line is matched at source so Γ1 ≡ 0 and δ ≡ 1 and the equations of interest simplify to  
 
 Vi  = (Vg/2) (1 +F²Γ2) 
 Vo = (Vg/2) (F) (1+Γ2) 
 Iout  = (Y2 Vg/2) (F) (1 -Γ2) 
 
We will assume a 50 ohm transmission line that has a delay of 150 ns and reduces pulse amplitude to 80% in a one way 
transit.  We will also assume Vg produces a 2 volt pulse.  In this context:  
 
 F  ≡ a gain of 0.80 and a delay of 150 ns   
 F²  ≡ a gain of 0.64 and a delay of 300 ns   
 Vg/2  ≡ a 1 volt pulse 
 Y2 Vg ≡ a 40 ma current pulse 
 



 

 

Case 1. Coax is matched at the load, hence Γ2 = 0 
 
 Vi = (Vg/2)  
 Vo = (Vg/2) (F) 
 Iout = (Y2 Vg /2)(F) 
 
Input voltage, Vi, is a 1v pulse. 
Output voltage, Vo, is a 0.8v pulse delayed 150 ns. 
Output current, Iout, is a 16 ma pulse delayed by 150 ns. 
There are no further pulses. 
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Case 2.  Coax is shorted at the load, hence Γ2 = -1 
 
 Vo =  0 
 Iout =  (Y2 Vg )(F) 
 Vi =  (Vg/2)(1-F²)  
 
Output voltage, Vo, into a short circuit is zero. 
Output  current, Iout, is a 32 ma pulse delayed by 150 ns. 
Input voltage, Vi, is a 1v pulse and then 300 ns later, a -0.64 v reflected pulse. 
There are no further pulses. 
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Case 3.  Coax is open at the load hence Γ2 = 1 
 
 Vo = (Vg) (F) 
 Iout = 0 
 Vi = (Vg/2)(1+F²)  
 
Output voltage, Vo, is a 1.6v pulse delayed 150 ns. 
Output current, Iout, into the open load is zero. 
Input voltage, Vi, is a 1v pulse and then 300 ns later, a 0.64 v reflected pulse. 
There are no further pulses. 
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Case 4.  Coax is open at the load hence Γ2 = 1 and the input is a step 
 
 Vo = (Vg) (F) 
 Iout = 0 
 Vi = (Vg/2)(1+F²)  
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A Closer Look at Telegrapher's Solutions 
 

The behavior of Z and F have three distinct regions for ordinary transmission lines. 
 
At high frequency, since we know the general form of the primary parameters, we can state that: 
 
 ωLω  >>  Rω 
 ωCω  >>  Gω 
 Z∞  =  sqrt{ L∞ / C∞ }   a purely real constant  
 delay  =  β/ω = sqrt { L∞ C∞  }   a constant 
 α  =  Rω/(2Zω) +ZωGω/2   loss increases with ω because both Rω and Gω increase with frequency. 
 
At intermediate frequencies: 
 
 ωLω <<  Rω   
 ωCω >> Gω 
 Z  = sqrt {Rdc/ ( jωCdc ) }  which has a phase angle of -45°  and increases inversely with ω 
 γ = sqrt {  jωRdcCdc  } = sqrt {  ωRdcCdc / 2 }  + (j) sqrt {  ωRdcCdc / 2 }  decreases with ω 
 
 
At dc and very low frequencies: 
 
 ωLω = 0   
 ωCω = 0 
 Zdc = sqrt {  Rdc / Gdc  } = a large real number 
 γ = sqrt {RdcGdc}  =  Rdc/Zdc = loss = a small real number. 

 
 



 

 

The DC Case 
 
 
Does our model work at dc?  It is not obvious from the unfamiliar forms that the solution takes.  The characteristic 
impedance is very high.  How, you ask, can you get any signal into it at all?  The answer is that the line is mismatched at 
both ends and the reflections from the far end diminish the impedance at the near end and the reflections at the near 
end diminish the impedance at the far end.  The two ends swap geometrically decreasing reflections that with a little 
smoothing look just like an RC  charging curve.  If you account for all the reflections in the end you wind up with exactly 
what you see on your osciloscope when you connect a dc source to a transmission line with a dc load. 
 
The derivation and solution of the Telegrapher's Equations makes no assumption about the frequency of the signals and 
does not exclude dc.  It ought to work.  And in fact it does.  In the zero frequency case, some terms disappear and 
others can be replaced by approximations in the form of simple monomials.  At the end all that is left is what you would 
expect from dc circuit theory: if the line is not too long, the wire resistance and the load form a voltage divider and the dc 
voltage at the load is a less than at the source by just the right amount.  And how long is too long?  It depends on Gdc.  
If the line is long enough that the shunt conductance becomes significant.  And what happens in that case?  Nothing 
much.  The telegraphers equations and solutions still work.  The model still works.  The only thing that doesn�t work is dc 
circuit theory using lumped coponents. 
 
How about SPICE.  Does it work with this model at dc?  The answer is yes for transient analysis, a qualified yes for AC 
analysis and a conditional yes for DC operating point analysis. 
 
In the transient analysis, you put a step function (from zero to one for example) and you see the wave form settle down 
to a sustained dc level.  The model definitely works in the transient analysis. 
 
In the AC analysis, you cannot spefify 0 Hz, but you can make the low frequency as low as you want (even one cycle per 
year ~ 31 nHz).  The model works in the AC analysis with the understanding that the frquency must be positive. 
 



 

 

What about DC operating point?  If the equations work and the model works and the transient and AC analysis work then 
the operating point analysis ought to work.  Right?  Yes it ought to work, but in the examples given in this article it does 
not.  But we can make it work, by increasing the inductance of Lcon.  
 
But, how do we feel about this?  We feel disquieted.  We are of the opinion that this guiding principal should hold: if the 
model is a sufficiently accurate model of the physical system, the simulator ought to produce accurate results.  Thus, we 
should expend our effort on accurate modeling and not on appeasing the simulator.  Once we get accurate simulation, we 
would be willing to tweak the model to run faster.   
 
We are not bothered by documented, universal principals such as current sources are preferred to voltage sources or that 
Laplace functions should go to zero for infinite frequency.  We are not bothered by undocumented, universal principals 
that we have discovered such as balanced circuits should be modeled by balanced models (which also is in accordance 
with our guiding principal of attempting to accurately model the physical system).  We are a little bothered if we have to 
have a tweak such as Lcon that may need to be adjusted depending on rise times and transmission line length.  But we 
are greatly bothered by having to change the value of the tweak for different types of analysis and especially if we have 
to change a reactance to get the dc operating point.  Reactance should have no effect on the DC operating point. 
 
So, what to do?  We offer the following suggestion.  If you can find a range of values for Lcon of say 100 to one where 
the outcome of a particular analysis does not change significantly, then set Lcon for the geometric mean of the range and 
use that value for that analysis.  Certainly, when you do run any analysis you should try both larger and smaller values for 
Lcon.   



 

 

 
Doing the Math for Zero Hertz 
 
Let�s examine the equation Vo/Vi = (F)(1+Γ2)/(1+F²Γ2) at dc. 
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Figure 1.  The equvalent circuit of a transmission line at DC. 
 
Fig. 1 shows what we would expect from dc circuit theory.  R is ohms per kft and x is the length in kft.  So xR is just the 
total resistance of the wire between the input and the output. 
 
 Γ2 ≡ (Zo - Z2 ) /  ( Z2 +Zo )  
 Z1 = Sqrt {  (Rω + sLω ) / (Gω + sCω )  } .   
 Z2 = Z1   
 γ(s)  =  Sqrt {  (Rω + sLω )  (Gω + sCω )  } 
 F(s)  =  e-xγ(s) 
 
We will need some approximations.  If m and n are very small numbers then: 
 
 1/(1+m)  ≈  1-m   
 em   ≈  1+m 



 

 

 (1+m)(1+n)  ≈  1 +m +n   
 (1+m)² ≈  1 +2m  
 
First, we set s=0 and ω=0 in the equations for Z1, Z2, F(s) and γ(s). 
 
 Z1 = Sqrt {  (Rdc  ) / (Gdc )  }    
 Z2 = Z1   
 γ(0)  =  Sqrt {  (Rdc )  ( Gdc )  } 
 F(0)  =  e-xγ(0) 
 
For the rest of this section we will supress the "dc" subscripts. 
 
The term Sqrt { G / R } is a very small conductance per unit length that will show up often.  We'll assign it the symbol 
symbol �ε�.  
 
 ε  =  Sqrt { G / R } 
 
 Z1  =  Sqrt { R/G }  
  =  1/ε 
 
 Γ2  =  (Zo - Z2 ) /  ( Zo +Z2 )  

=  -(1 -εZo ) / (1 +εZo) 
=  -(1 -2ε²Zo² +ε²Zo²) / (1 -ε²Zo²) 

  ≈ ( -1 +2εZo ) 
 
 γ  =  Sqrt { R G }  
  = ( R ) Sqrt { G/R }  
  = Rε 
 
 F = e-xγ  

  =  e-xRε   



 

 

  ≈  1 �xRε 
 

 F² ≈ (1 -xRε )²  
  ≈ 1 -2xRε 
 
 F²Γ2 ≈ (1 -2xRε )(-(1 -2εZo)) 
  ≈ -(1 -2xRε -2εZo) 
  = -1 +2xRε +2εZo 
 
 Vo/Vi = (F) [ 1+Γ2 ] /[ 1 +F²Γ2 ] 
  ≈ (1 -xRε) [1 + (-1 +2εZo) ] / [ 1 + (-1 +2xRε +2εZo) ] 
  = (1 -xRε) (2εZo) / (2xRε +2εZo) 
  = (1 -xRε) (Zo) / (xR +Zo) 
  ≈ (Zo) / (xR +Zo) 
 
This says that the total wire resistance, xR, and the output load, Zo, form a voltage divider exactly as if the total wire 
resistance were a single lumped component.  In other words, we get exactly what we would get from circuit theory.  
There is caveat.  The term xRε may not be small because x, the length, is unlimited and could be very long.  The 
telegrapher�s equations still work.  The two port model still works.  But the distributed shunt conductance has become 
large enough that the approximations are not sufficiently accurate to apply the theory of circuits constructed from lumped 
elements. 
 
 


