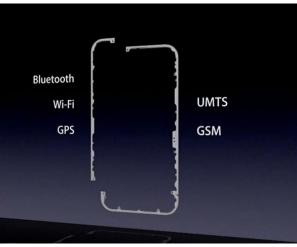
Microstrip Patch Antenna Design Principles

Ben Horwath

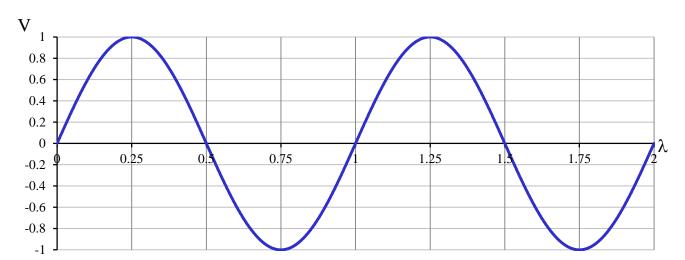

Outline

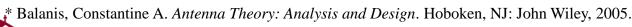
- Introduction
- Antenna basics
- Microstrip antennas
- Design methodology
- Design guidelines
- Footprint equations
- Circuit equivalent equations
- Quick example
- EM solvers
- PhD work-to-date
- Future efforts
- Some good references
- Questions

Introduction

- For consumer devices, wireless is everywhere!
 - LTE (700 MHz), GSM (850MHz/1.9GHz), Wi-Fi (2.4 GHz), Bluetooth (2.4 GHz), GPS (1.575 GHz) With more coming: 5G (d)
- Apple's iPhone 4 is popular science
 - But illustrates sizes and importance of good antenna design

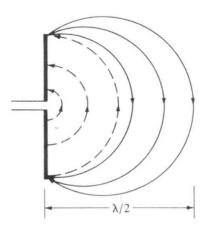
• Why microstrip antennas?

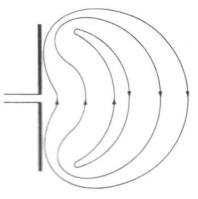

The patch antenna is a good place to start for antenna fundamentals


SCU Center for Analog Design and Research

With more coming: 5G (or whatever), Wireless Display, Wireless USB, etc.


Antenna Basics


- How is radiation achieved?
- Wavelength is key: $\frac{\lambda}{2}$, where $\lambda = \frac{c_0}{f_r \sqrt{\epsilon_r}}$



Santa Clara

University

Microstrip Antennas

- With the microstrip antenna, $\lambda/2$ is a bit too big for consumer mobile devices
- Typically for space and military applications
- Easy to design/manufacture, yet very capable
 - Good value, great for antenna arrays
- Scale is better for millimeter wave RF (60+ GHz)

Design Methodology

- Find a "comfortable" model
 - Transmission Line easiest, can be done in Excel
 - Cavity higher accuracy, higher complexity
 - Full Wave very accurate/adaptable, super complex
- Using specifications, generate initial design
 Resonance frequency, gain, substrate, footprint, etc.
- Compare with an EM solver
 - Tune parameters such as ε_{reff} and ΔL (more details soon)
- Re-iterate design, prototype, measure
- Finalize design for manufacturing

University

Design Guidelines

- For microstrip antennas, a good 1st step is to assume a standard substrate
 - like Rogers RT/duroid 5880
- Importance of ε_r , h
- To avoid cross polarization, keep 1 < W/L <1.5
- Rule of $\lambda/2$ versus ~0.48 λ

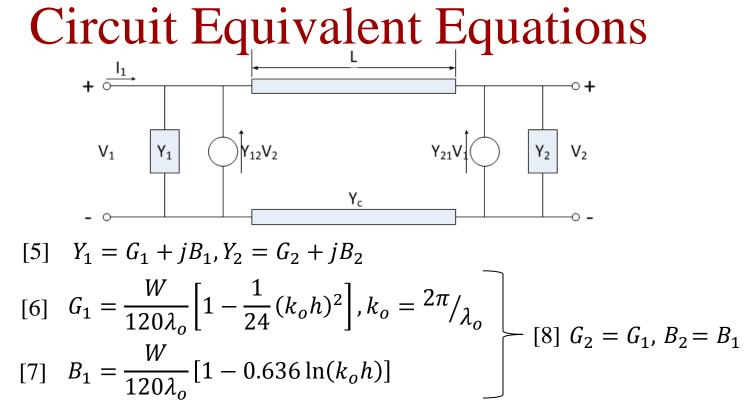
Footprint-Generating Equations

An initial guess at the patch width:

[1]
$$W = \frac{c_o}{2f_r} \sqrt{\frac{2}{\epsilon_r + 1}}$$
, c_o is speed of light

Find effective parameters:

[2]
$$\epsilon_{reff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-1/2}$$
, $W/_h > 1$
[3] $\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{reff} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\epsilon_{reff} - 0.258) \left(\frac{W}{h} + 0.8\right)}$


Get patch length:

Santa Clara

University

[4]
$$L = \frac{c_o}{2f_r \sqrt{\epsilon_{reff}}} - 2\Delta L$$

⁶ Balanis, Constantine A. Antenna Theory: Analysis and Design. Hoboken, NJ: John Wiley, 2005.

Via admittance transfer function:

[11] $Z_{in} = \frac{1}{Y_{in}} = R_{in}$

[9]
$$\widetilde{Y_2} = \widetilde{G_2} + j\widetilde{B_2} = G_1 - jB_1$$

[10] $Y_{in} = Y_1 + \widetilde{Y_2} = 2G_1$

For this discussion we will ignore mutual effects

Quick Example

Rogers RT/duroid 5880 chosen:
 b 0.508mm 100mm v 100mm hourd

– h=0.508mm, 100mm x 100mm board, ϵ_r =2.2

- Want an antenna for GSM, $f_r=1.9GHz$
- Use equations in Microsoft Excel

- W=6.24cm, L=5.30cm, Z_{in}=151.8 Ω

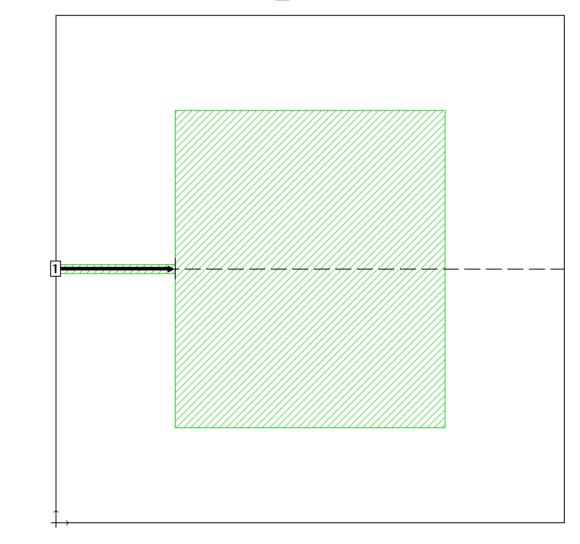
- Feed set to be 50 Ω (standard): W_o=1.6mm

• Confirm antenna using an EM solver

Santa Clara

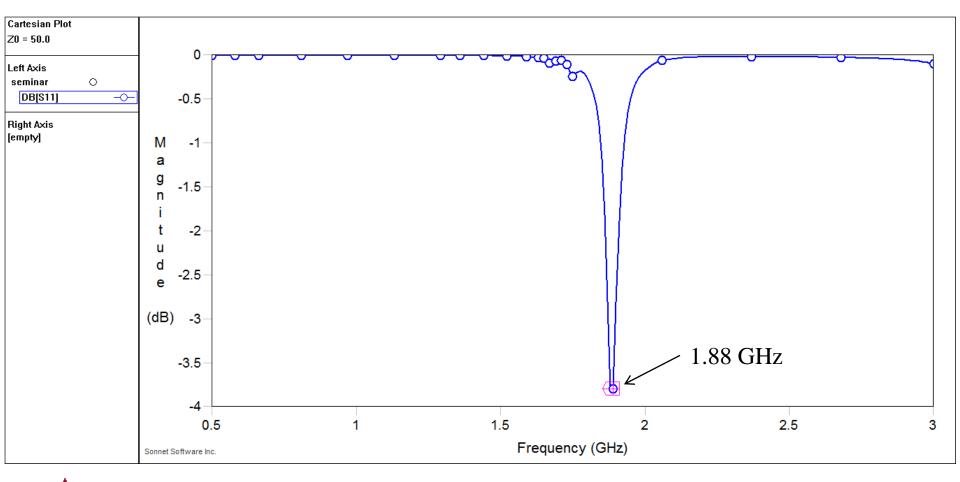
University

- Sonnet yields Z_{in} =209.7 Ω at 1.88GHz

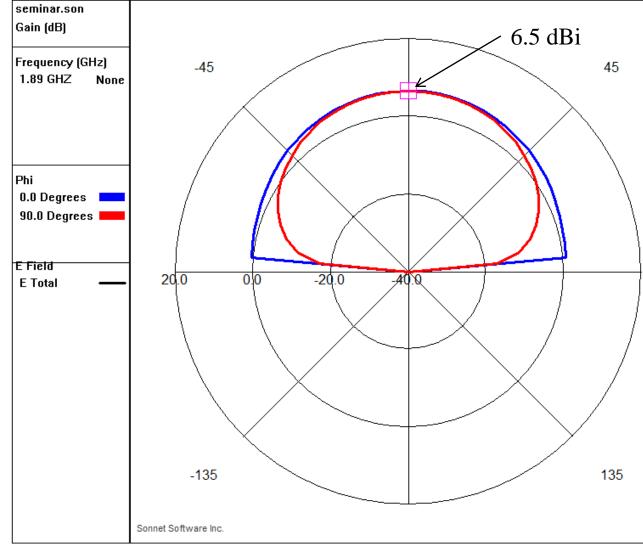


Equations Implemented in Excel

er	2.2		
h	0.000508	m	
со	299792458	m/s	
fr	1.900E+09	Hz	
lo	1.578E-01	m	
ko	39.821055	rad/m	
W	0.0624	m	
ereff	2.1727		
DL	0.0003	m	
L	0.0530	m	
Le	0.0535	m	
G	0.0033		
В	0.0115		
Yin	0.0066		
Zin	151.8	Ohms	
Wo	0.00158	m	
ereff2	1.8721		
Zc	50.00	Ohms	
Gamma	0.504438	-2.97192 0	B
VSWR	3.0358218		

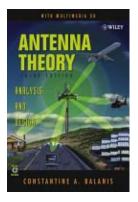


Sonnet Implementation



Sonnet S11 Response

Sonnet Radiation Patterns



SCU Center for Analog Design and Research

University

Some Good References

- Antenna Theory Constantine Balanis
 - Used for Antennas I (ELEN 715)

- Microstrip Antenna Design Handbook Garg et al – Title says it all, but a few inaccuracies have been found
- Antenna Theory and Microstrip Antennas D.G. Fang

• www.antenna-theory.com

PhD Work-to-date

- Focus on tunable antennas
 - Add impedance elements to electrically change the characteristics of the antenna (Z_{in} , E field)
- 60 GHz on-chip tunable antennas and array
 - Adaptive field patterns tuned by IMPATT diodes
- Mantenna
 - Wearable antenna array operating at 50-500 MHz
 - Direction finding for military applications
- 77 GHz system optimization

– Extending Prof. Al-Attar's monolithic transmitter work

Future Efforts

- Gain full theoretical control of the antenna
 - Change bandwidth, f_r , E field/directivity at will
 - Use a range of IMPATT locations and values
- Investigate adaptive array pattern control
 Optimize via array geometry
- OTA for PhD completion
 - Develop a test system, work with industry
 - RF tx/rx chains plus control

Questions?

Contact Info: Ben Horwath bhorwath@scu.edu www.horwathtech.com

