BGSCRIPT SCRIPTING LANGUAGE

DEVELOPER GUIDE
Sunday, 16 February 2014

Version 3.3

biu - EIEE

Copyright © 2001 - 2013 Bluegiga Technologies

Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed herein at
any time without notice, and does not make any commitment to update the information contained herein.
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual. Bluegiga
Technologies' products are not authorized for use as critical components in life support devices or systems.

Bluegiga Access Server, Access Point, APx4, AX4, BSM, iWRAP, BGScript and WRAP THOR are trademarks
of Bluegiga Technologies.

The Bluetooth trademark and logo are registered trademarks and are owned by the Bluetooth SIG, Inc.
ARM and ARM9 are trademarks of ARM Ltd.
Linux is a trademark of Linus Torvalds.

All other trademarks listed herein belong to their respective owners.

Copyright © 2001-2013 Bluegiga Technologies Page 2 of 45

Table of Contents

1 Version History 5
2 BGScript Scripting Language 6
3 BGScript Syntax 7
3.1 Comments 7
3.2 Variables and Values 7
3.2.1 Values 7
3.2.2 Variables 7
3.2.3 Global Variables 9
3.2.4 Constant Variables 9
3.2.5 Buffers 9
3.2.6 Strings 10

3.3 Expressions 11
3.4 Commands 12
3.4.1 event <event_name> (< event_parameters >) 12
3.4.2 if <expression> then [else] end if 12
3.4.3 while <expression> end while 12
3.4.4 call <command name>(<command parameters>..)[(response parameters)] 12
3.4.5 let <variable> = <expression> 13
3.4.6 sfloat(mantissa , exponent) 13
3.4.7 float(mantissa , exponent) 13
3.4.8 memcpy(destination, source , length) 14
3.4.9 memcmp(bufferl , buffer2 , length) 14
3.4.10 memset(buffer , value , length) 14

3.5 Procedures 15
3.6 Multiple script files 15
3.6.1 import 15
3.6.2 export 16

4 BGScript Limitations 17
4.1 32-bit resolution 17
4.2 Declaration required before use 17
4.3 DIM variable size 17
4.4 Reading internal temperature meter disabled 10 interrupts 17
4.5 Writing data to an endpoint, which is not read 17
4.6 No interrupts on Port 2 17
4.7 Performance 17
5 Example BGscripts 18
5.1 Basics 18
5.1.1 Catching system start-up 18
5.1.2 Catching Bluetooth connection event 19
5.1.3 Catching Bluetooth disconnection event 20

5.2 Hardware interfaces 21
5.2.1 ADC 21
5.2.2 12C 23
5.23 10 24
5.2.4 SPI 26
5.2.5 Generating PWM signals 28

5.3 Timers 29
5.3.1 Continuous timer generated interrupt 29
5.3.2 Single timer generated interrupt 30

5.4 USB and UART endpoints 31
5.4.1 UART endpoint 31
5.4.2 USB endpoint 32

5.5 Attribute Protocol (ATT) 33
5.5.1 Catching attribute write event 33

5.6 Generic Attribute Profile (GATT) 34
5.6.1 Changing device name 34
5.6.2 Writing to local GATT database 35

5.7 PS store 36

Copyright © 2001-2013 Bluegiga Technologies Page 3 of 45

5.7.1 Writing a PS keys 36

5.7.2 Reading a PS keys 37
5.8 Advanced scripting examples 38
5.8.1 Catching IO events and exposing them in GATT 38
5.9 Bluegiga Development Kit Specific Examples 39
5.9.1 Display initialization 39
5.9.2 FindMe demo 40
5.9.3 Temperature and battery readings to display 41
5.10 BGScript tricks 43
5.10.1 HEX to ASCII 43
5.10.2 UINT to ASCII 43
BGScript editors 44
6.1 Notepad ++ 44
6.1.1 Syntax highlight for BGScript 44

Copyright © 2001-2013 Bluegiga Technologies Page 4 of 45

1 Version History

Version | Comments

2.3 BGScript limitations updated with performance comments

2.4 Added new features included in v.1.1 software.
Small improvements made into BGScript examples
Added a 4-channel PWM example

25 Reading ADC does not disable 10 interrupts

2.6 Added battery reading example using the internal battery monitor
2.7 Updated ADC internal reference to 1.24V (was 1.15V)

3.0 BLE SW1.2 additions and changes:

® Procedure support added
® Memset support for buffer handling added
® Limitations section aligned with the new SW enhancements

In addition, editorial improvements are done within the document.

3.1 Improved BGScript syntax documentation
3.2 12C example improved and corrected
3.3 Splitting BGScript into multiple files through IMPORT and export directive made possible

Copyright © 2001-2013 Bluegiga Technologies Page 5 of 45

2 BGScript Scripting Language

The Bluetooth Smart SDK also allows the application developers to create fully standalone devices without a
separate host MCU and run all the application code on the Bluegiga Bluetooth Smart Hardware. The Bluetooth
Smart modules can run simple applications along the Bluetooth Smart stack and this provides a benefit when
one needs to minimize the end product’s size, cost and current consumption. For developing standalone
Bluetooth Smart applications the SDK includes the Script VM, compiler and other BGScript development tools.
BGScript provides access to the same software and hardware interfaces as the BGAPI protocol and the
BGScript code can be developed and compiled with free-of-charge tools provided by Bluegiga.

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to
develop and lots of ready made examples are provides with the SDK.

Misteata wmact Resdy Medubs

C)

Bluegiga BGSCrgt™ v

Bluegiga BGAR™

@Ic#mlh@ehnﬁh{ﬁt@
I
(Attribute Protocel [ATT))
L
C LICAP)
L Lo
C))

Figure: BGScript System Architecture

A BGScript code example:

System Started
event system boot (major, nminor, patch, build, Il_version, protocol _version, hw

#Enabl e adverti sing node
cal | gap_set_node(gap_general _di scover abl e, gap_undi r ect ed_connect abl e)

#Enabl e bondabl e node
call smset_bondabl e_node(1)

#Start timer at 1 second interval (32768 = crystal frequency)
call hardware_set _soft _tiner(32768)
end

When BGScript is used the BGAPI transport protocol is disabled.

.

Copyright © 2001-2013 Bluegiga Technologies Page 6 of 45

3 BGScript Syntax

BGScript scripting language has BASIC-like syntax. Code is executed only in response to events and code lines
are executed in order, starting from event-definition and finished at return or end. Each line represents a single

command.

Below is a conceptual example of BGScript usage with Bluegiga Wi-Fi Software. The code below is executed at
the system start i.e. when the device is powered up and the code will start the Wi-Fi subsystem and connects to

a Wi-Fi access point with SSID "test_ssid".
system start up event |istener
event system boot (maj or, mi nor, patch, bui | d, boot | oader, t cpi p, hw)
Turn W-Fi subsystem on
call sme_wi fi_on()

end

W-Fi ON event |istened
event sme_wifi_is_on(result)

connect to a network
call sme_connect _ssid(9,"test_ssid")
end

3.1 Comments

Anything after # character is considered as a comment.

X=1 #coment

3.2 Variables and Values

3.2.1 Values

Values are decimal values. Hexadecimal values can be used by putting $ before value.
All values are internally 32-bit in Little-Endian format.

$0c
$abcde

12 # same as Xx
703710 # sane as y

IP addresses are automatically converted to their 32-bit decimal value equivalents.

X = 192.168.1.1 # sanme as x = $0101A8C0

3.2.2 Variables

Variables are signed 32-bit Little-Endian values. They need to be defined before usage.

di m x

Copyright © 2001-2013 Bluegiga Technologies

Page 7 of 45

Example

di m x

dimy

X (2*2) +1
y X + 2

Copyright © 2001-2013 Bluegiga Technologies Page 8 of 45

3.2.3 Global Variables
Data types can be defined globally using dim outside event block.

dimj

Software timer |istener
event hardware_soft_timer(handl e)
j=j+1
call attributes wite(xgatt_counter, 2, j)
end

3.2.4 Constant Variables

Constants are signed 32-bit Little-Endian values. They need to be defined before use.

const x = 2

3.2.5 Buffers

Buffers hold 8-bit values and can be used to prepare or parse more complex data structures. For example in the
Bluetooth Smart Software to prepare attribute before inserting it into attribute database.

Like variables also the buffers need to be defined before usage. Maximum size of a buffer is 256 bytes.

event hardware_io_port_status(delta, port, irqg, state)

tmp(0:1) = 2
tnmp(1:1) = 60 * 32768 / delta
call attributes_wite(xgatt_hr, 2, tnp(0:2))
end
di m u(10)
Usage

BUFFER(<expression>:<size>)
<expression> is used to index to first byte in buffer and <size> is used to specify how many bytes to use

u(0:1)
u(l:2)

$a
$123

Also the following syntax could be used.

u(0:3) = $1230a

When using constant number to initialize bugger only four (4) bytes can be set at a time. Longer buffers have to
be written in multiple parts.

u(0: 4)
u(4:1)

$32484746
$33

Copyright © 2001-2013 Bluegiga Technologies Page 9 of 45

Using Buffers with Expressions

Buffers can also be used in mathematical expressions, but only maximum of four (4) bytes are supported in
expressions as all numbers are 32 bit Little-Endian format.
Following examples show valid use of buffers in expressions.

a = u(0:4)
a=u(2:2) +1
u(0: 4) b
u(2:1) b +1

The following example however is not a valid one:

if u(0:5)= "FGH23"
end if

This is because mathematical operator interprets both sides as numerical values, and in BGScript numbers are
always 4 bytes (32 bits). So you can only compare (with '=") values which are exactly four (4) bytes.

if u(l:4)= "GH3"
end if

3.2.6 Strings

Buffers can be initialization using string constants. With strings longer than four (4) can be used.

u(0: 5)= " FGH23"

Strings support C-style escape sequences, so the next example will do the same as the above:

u(0: 5) ="\ x46\ x47\ x48\ x32\ x33"

Copyright © 2001-2013 Bluegiga Technologies Page 10 of 45

3.3 Expressions

Expressions are given in infix notation.

x = (1+#2) * (3+1)

The following mathematical operators are supported:

Addition:

Subtraction:
Multiplication:
Division:

Less than:

Less than or equal:
Greater than:

Greater than or equal:
Equals:

Not equals:

+

*

/
<
<=

>

The following bitwise operations are supported:

AND &
OR |
XOR A
Shift left <<
Shift right >>

The following logical operations are supported:

AND &&
OR Il

Copyright © 2001-2013 Bluegiga Technologies

Page 11 of 45

3.4 Commands

3.4.1 event <event_name> (< event_parameters >)

Code block defined between event and end will be run in response to a specific event. Execution will stop when
reaching end or return.

event system boot (buil d, protocol _version, hw)
cal |l gap_set_node(gap_general _di scover abl e, gap_undi r ect ed_connect abl e)
end

3.4.2 if <expression>then [else] end if

Condition can be tested with if. Commands between then and end if will be executed if <expression> is true.

if x<2 then
x=2
y=y+1

end if

If else is used and if the condition is success, commands between then and else will be executed. However if
the condition fails then commands between else and end if will be executed.

if x<2 then
x=2
y=y+1

el se
y=y-1

end if

3.4.3 while <expression> end while

Loops can be made using while. Command lines between while and end while will be executed while <
expression> is true.

a=0

whi |l e a<10
a=a+l

end while

3.4.4 call <command name>(<command parameters>..)[(response parameters)]

call is used to execute BGAPI commands and receive responses. Command parameters can be given as
expressions and response parameters are variable names where response values will be loaded. Response
parentheses and parameters can be omitted.

dimr
wite 2 bytes fromtnp buffer index O to xgatt_hr attribute

Response will be stored in variable r
call attributes_wite(xgatt_hr,2,tnp(0:2))(r)

call can also be used to execute procedures (functions). Syntax is similar to BGAPI command, except return
values are not supported.

Copyright © 2001-2013 Bluegiga Technologies Page 12 of 45

3.4.5 let <variable> = <expression>

Optional command to assign expression to variable

let a
let b

Inn
=

3.4.6 sfloat(mantissa , exponent)

Changes given mantissa and exponent in to 16bit IEEE 11073 SFLOAT value which has base-10. Conversion is
done using following algorithm:

—eponenvanisza |

Length 4 bit 12 bit

Type

2-complement 2-complement

Mathematically the number generated by sfloat() is calculated as <mantissa> * 10" <exponent>. The return
value is a 2-byte uint8 array in the SFLOAT format. Below are some example parameters, and their resulting
decimal sfloat values:

et o

-105
100
320

-1 -10.5
0 100
3 320,000

Use the sfloat() function as follows assuming that buf is already defined as a 2-byte uint8s array (or bigger):

buf (0:2) = sfloat(-105, -1)

buf will now contain the SFLOAT representation of -10.5.

Some reserved special purpose values:

NaN
(not a number)

® exponent O

® mantissa Ox007FF
NRes
(not at this resolution)

® exponent 0

® mantissa 0x00800
Positive infinity

® exponent O

® mantissa Ox007FE
Negative infinity

® exponent O

®* mantissa 0x00802
Reserved for future use

® exponent O

®* mantissa 0x00801

3.4.7 float(mantissa , exponent)

Changes given mantissa and exponent in to 32-bit IEEE 11073 SFLOAT value which has base-10. Conversion
is done using following algorithm:

Copyright © 2001-2013 Bluegiga Technologies

Page 13 of 45

I T [

Length 8 bit 24 bit

Type signed integer signed integer

Some reserved special purpose values:

®* NaN
(not a number)
® exponent O
® mantissa 0x007FFFFF
®* NRes
(not at this resolution)
® exponent O
® mantissa 0x00800000
® Positive infinity
® exponent O
®* mantissa 0x007FFFFE
®* Negative infinity
® exponent O
® mantissa 0x00800002
® Reserved for future use
® exponent O
® mantissa 0x00800001

3.4.8 memcpy(destination, source , length)

The memcpy function copies bytes from source buffer to destination buffer. Destination and source should not
overlap.

di m dst (3)
di msrc(4)
mencpy(dst (0), src(1l), 3)

3.4.9 memcmp(bufferl, buffer2 , length)

the memcmp function compares buffer1 and buffer2, for the length defined with /ength. The function returns 1
if the data is identical.

di m x(3)

dimy(4)

if menmcnp(x(0),y(1),3) then
#do sonet hi ng

end if

3.4.10 memset(buffer , value , length)

This function fills buffer with with the data defined in value for the length defined with /ength.

di m dst (4)
nenset (dst (0), $30, 4)

Copyright © 2001-2013 Bluegiga Technologies Page 14 of 45

3.5 Procedures

BGScript supports procedures which can be used to implementing subroutines. Procedures differ from functions
used in other programming languages since they do not return a value and cannot be used expressions.
Procedures are called using the call command just like other BGScript commands.

Procedures are defined by procedure command as shown below. Parameters are defined inside parentheses
the same way as in event definition. Buffers are defined as last parameter and requires a pair of empty
parentheses.

Example using procedures to print MAC address:

dimn,j

print a nibble
procedure print_nibbl e(nibble)
n=ni bbl e
if n<$a then
n=n+$30
el se
n=n+$37
end if
call endpoint_send(O0, 1, n)
end

print hex val ues
procedure print_hex(hex)
call print_nibbl e(hex/16)
call print_nibbl e(hex&$f)
end

print MAC address
procedure print_mac(len, mac())
j=0
while j<len
call print_hex(mac(j:1))

j=j+1
if j<6 then
cal |l endpoint_send(0,1,":")
end if
end while

end

boot event |istener

event system boot (maj or, m nor, patch, bui | d, boot | oader, t cpi p, hw)
read nmac address
call config_get_mac(0)

end

MAC address read event |istener
event config_mac_address(hw_ i nterface, mac)

print the MAC address
call print_mac(6, mac(0:6))
end

3.6 Multiple script files

3.6.1 import

IMPORT allows including other script files.

Copyright © 2001-2013 Bluegiga Technologies Page 15 of 45

main.bgs

import "other.bgs"

event system boot (maj or, m nor, pat ch, bui | d, boot | oader, t cpi p, hw)
end

3.6.2 export

By default all code and data are local to each script file. Export - directive allows accessing variables and
procedures from external files.

hex.bgs

export di m hex(16)

export procedure init_hex()
hex(0: 16) =" 0123456789ABCDEF"

end

main.bgs

import "hex.bgs"

event system boot (maj or, m nor, patch, build, || _version, protocol, hw)
call init_hex()

end

Copyright © 2001-2013 Bluegiga Technologies Page 16 of 45

4 BGScript Limitations

4.1 32-bit resolution

All operations in BGScript must be done using values that fit into 32 bits. The limitation affects for example long
timer intervals. Since the soft timer has a 32.768kHz tick speed, it is possible in theory to have maximum interval
of (2"32-1)/32768kHz = 36.4h. If longer timer periods are needed, incremental counters need to be used.

In particular with Bluetooth LE products, timer is 22 bits, so the maximum value with BLE112 is 2722 =
4194304/32768Hz = 128 seconds, while with BLED112 USB dongle the maximum value is 222 =
4194304/32000Hz = 131 seconds

4.2 Declaration required before use

All data and procedures needs to be declared before usage.

4.3 DIM variable size

The largest size of a DIM variable is 255 bytes. Additionally, the maximum size of all DIM variables combined is
limited to 255 bytes. This limitation is in place to ensure that the small amount of RAM on the internal 8051
processor is not used entirely by user space variables and enough RAM is available for the Bluetooth Smart
stack to maintain connections and transmission buffers.

4.4 Reading internal temperature meter disabled IO interrupts

Reading BLE112 internal temperature sensor value

call hardware_adc_read(14, 3,0)

4.5 Writing data to an endpoint, which is not read

If the USB interface is enabled and the USB is connected to a USB host, there needs to be an application
reading the data written to the USB. Otherwise the BGAPI messages will fill the buffers and cause the firmware
to eventually freeze.

4.6 No interrupts on Port 2

Currently 1/O interrupts cannot be enabled on any of the Port 2 pins. Interrupts are only only supported on Port 0
or Port 1.

4.7 Performance

BGScript has limited performance, which might prevent some applications to be implemented using BGscript.
Typically, BGScript can execute commands/operations in the order of thousands per second.

Copyright © 2001-2013 Bluegiga Technologies Page 17 of 45

5 Example BGscripts

This section contains useful BGScript examples.

5.1 Basics
This section contains very basic BGScript examples.

5.1.1 Catching system start-up

This example shows how to catch a system start-up. This event is the entry point to all BGScript code execution
and can be compared to main() function in C.

System start-up

Boot event |istener
event system boot (maj or, m nor, patch, build, || _version, protocol, hw)

System started, enable advertising and all ow connections
cal | gap_set_node(gap_general _di scover abl e, gap_undi r ect ed_connect abl e)

end

Copyright © 2001-2013 Bluegiga Technologies Page 18 of 45

5.1.2 Catching Bluetooth connection event

When a Bluetooth connection is received a connection_status(...) event is generated.

The example below shows how to enable advertisements to make the device connectable and how to catch a
Bluetooth connection event.

Entering advertisement mode after disconnect

di m connect ed

System start/boot |istener
event system boot (maj or, m nor, patch, build, | _version, protocol, hw)

Device is not connected yet
connected = 0

Set advertisenent interval to 20 to 30nms. Use all advertisenent channels
call gap_set_adv_paraneters(32,48,7)

Start advertisenent (generic discoverable, undirected connectabl e)
call gap_set_node(2,2)
end

Connection event |istener
event connection_status(connection, flags, address, address_type, conn_interval, tineout, |atency,
bondi ng)

Device i s connected.

connected = 1
end

Copyright © 2001-2013 Bluegiga Technologies Page 19 of 45

5.1.3 Catching Bluetooth disconnection event

When a Bluetooth connection is lost a connection_disconnected event is created.

Entering advertisement mode after disconnect

Di sconnection event
event connection_di sconnected(handl e, result)

#connecti on di sconnected, continue advertising

cal | gap_set_node(gap_general _di scover abl e, gap_undi r ect ed_connect abl e)
end

Copyright © 2001-2013 Bluegiga Technologies Page 20 of 45

5.2 Hardware interfaces

This section contains basic examples to use hardware interfaces like 12C, SPI, AlO etc. from the BGScript.

5.2.1 ADC

ADC events can be cached with hardware_adc_result(...) event listener and the read operations on the other
hand are called with call hardware_adc_read(...) function.

The example below shows how to read the internal temperature monitor and how to convert the value into
Celsius

ADC read

di m cel si us
di m of f set

di mtmp(5)

System boot event generated when the device is stared
event system boot(major ,nminor ,patch ,build ,Il_version ,protocol _version ,hw)

Call ADC read

14 = internal tenperature sensor
3 = 12 effective bits
0=
|

H* H H*

Internal 1.24V reference
call hardware_adc_read(14, 3,0)
end

ADC event |istener
event hardware_adc_resul t (input, val ue)

ADC value is 12 MsB
celsius = value / 16

Cal cul ate tenperature
ADC*V_ref/ADC max * T_coeff + offset
cel sius = (10*cel sius*1240/2047) * 10/45 + offset

set flags according to Health Thernoneter specification
0 = Tenperature in Cel sius
tmp(0: 1) =0

Convert to float

tnp(1: 4)=float (cel sius, -1)
end

Copyright © 2001-2013 Bluegiga Technologies Page 21 of 45

The example below shows how to read the internal battery monitor and how to convert the battery voltage level
into percentage. A full example is included in the Bluetooth Smart SDK v.1.1 or newer.

ADC read

This event listener listens for incomng ATT protocol read requests and when the battery
attribute is read executes an ADC read when the battery value is requested
event attributes_user_read_request(connection, handle, offset, nmaxsize)
bat conn_handl e=connecti on
#start neasurenent, read VDD/3, 9 effective bits
call hardware_adc_read(15, 3,0)
end

This event |istener catches the ADC result
event hardware_adc_resul t (input, val ue)
#scal e value to range 0-100
#measurenent range is 32768 = 1.24V3 = 3.72V
#new battery ADC neasurenment is 22198=2.52V
#m ni mum battery voltage is 2.0 vol ts=2.0V/ 3. 72w 32768= 17617
#22198 - 17617 = 4580
batresul t =(val ue-17617) *100/ 4580

#clip to 100%

if batresult>100 then
batresul t =100

end if

if batresult<0 then
bat resul t =0

end if

tmp(0: 1) =batresul t

i f batconn_handl e<$ff then
#i f connection handle is valid
call attributes_user_read_response(batconn_handle, 0,1, tnp(0:1))
bat conn_hand| e=%$f f
end if
end

=, The above example requires the Bluetooth Smart SDK v.1.1 or newer in order to work properly. The
code automatically turns off the external DC/DC (if used) when the battery reading is made and then
re-enables it after the reading is complete.

Copyright © 2001-2013 Bluegiga Technologies Page 22 of 45

5.2.212C

BLE112 has a software implementation (bit-bang) of I2C which uses fixed pins. For communicating over the 12C
bus following hardware setup is needed:

* P16

. 12C data
* P17

: 12C clock

Pull-ups must be enabled on both the pins.

BLE113 has a hardware implementation of 12C (only master-mode is supported). 12C pins are the following:

®* Pin 14

: 12C clock
® Pin 15

. 12C data

No UART or SPI can be used in channel 1 with alternative 2 configuration when 12C is used.

]

12C operations

Reading 2 bytes from device which has |2C address of 128.
12C stop condition is sent after the transm ssion.

Result O indicates successful read.

call hardware_i 2c_read(128,1,2)(result,data_| en, data)

Wite to address 128 one byte (Oxf5). 12C stop condition is sent after the transm ssion.

witten indicates how many bytes were successfully witten.
call hardware_i2c_wite(128,1,1,"\xf5")(witten)

Copyright © 2001-2013 Bluegiga Technologies Page 23 of 45

5.2310

IO wake-up

When the device has no active tasks or timers running it can go to power mode 3 (PM3), which is the lower
power mode consuming about 400nA. PM3 power save mode however requires an external wake-up using an
1O pin.

The example here shows and 10 interrupt can be used to wake up the device and start advertisements for 5
seconds and then go back to PM3.

Enabling and catching 10 interrupts

Boot event |istener
event system boot (mejor, nminor, patch, build, Il_version, protocol _version, hw)

Enable 1O interrupts fromPORT O PINs PO_0 and PO_1 on rising edge
call hardware_io_port_config_irq(0, $3,0)
end

HWinterrupt |istener
event hardware_i o_port_status(delta, port, irqg, state)

Configure advertisenent paraneters

call gap_set_adv_paraneters(40, 40, 7)

Start advertisenents

call gap_set_node(2, 2)

Start a 5 second, one stop tiner

call hardware_set_soft_tiner($27FFB, 0 ,1)
end

Tinmer event |istener
event hardware_soft_timer(handl e)

#Stop advertisenents and allow the device to go to PMB
call gap_set_node(0, 0)
end

To enable PM3 and configure the wake-up pin the following configurations need to be used in the
hardware.xml file.

<hardware>

<sleeposc enable="true" ppm="30" />

<wakeup_pin enable="true" port="0" pin="0" />

<usb enable="false" endpoint="none" /> <txpower power="15" bias="5" />

<port index="0" tristatemask="0" pull="down" />
<script enable="true" />

<slow_clock enable="true" />

</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page 24 of 45

Writing 10 status

The example below shows how to write the PO_O status.

Enabling and catching 10 interrupts

Boot event |istener
event system boot(mejor ,mnor ,patch ,build ,Il_version ,protocol _version ,hw)

Configure the PO_0 as out put

call hardware_io_port_config_direction(0, 1)
Enable PO_0 pin

call hardware_io_port_wite(0, 1, 1)

Start a 5 second, one stop tiner
call hardware_set_soft_tinmer($27FFB, 0 ,1)
end

Tinmer event |istener
event hardware_soft_timer(handl e)
When tiner expires disable PO_0 pin
call hardware_io _port_wite(0, 1, 0)
end

Copyright © 2001-2013 Bluegiga Technologies Page 25 of 45

5.2.4 SPI
Writing SPI

SPI interface can be used as a peripheral interface for example to connect to sensors like accelorometers or
simple displays. The example below shows how to write data to SPI interface.

Writing to SPI

Boot event |istener
event system boot(major, minor, patch, build, Il_version, protocol _version, hw)

Witing 5 bytes to SPI
call hardware_spi _transfer (0,5, "\x01\x02\ x03\ x04\ x05")

Witeing a "Hello world\!" string to SPI
call hardware_spi _transfer(0,12,"Hello world\!")
end

+, The following configurations need to be in the hardware.xml to enable the SPI interface and BGScript
execution.

<hardware>

<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

<script enable="true" />

</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page 26 of 45

Reading SPI

The example below shows how to read data from SPI interface. SPI interface returns you as many bytes as you
write to it. In this example two (2) bytes are written to SPI interface and the return values return the read result.
The read data is stored in the tmp-array and it has length on two (2) bytes.

Reading SPI interface

di mtnmp(10)
dimresult
di m channel
dimtlen

call hardware_spi_transfer(0,2,"\x01\x02")(resul t, channel,tlen,tnp(0))

The following configurations need to be in the hardware.xml to enable the SPI interface and BGScript
execution.

<hardware>

<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

<script enable="true" />

</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page 27 of 45

5.2.5 Generating PWM signals

In order to generate PWM signals output compare mode needs to be used. PWM output signals can be
generated using the timer modulo mode and when channels 1 and 2 are in output compare mode 6 or 7.

For detailed instructions about PWM please refer to chapter 9.8 Output Compare Mode in CC2540 user guide.

In order to generate a 4 channel PWM signal the following example can be used.

A 4 channel PWM signal

Boot event |istener
event system boot (major, nminor, patch, build, |Il_version, protocol _version, hw)

call hardware_timer_conparator(1l, 0, 6, 32000)
call hardware_timer_conparator(l, 1, 6, 16000)
call hardware_tinmer_conparator(1l, 2, 6, 10000)
call hardware_tinmer_conparator(1l, 3, 6, 8000)
call hardware_tinmer_conparator (1, 4, 6, 4000)

end

The example uses Timer 1 in alternate 2 configuration with four (4) PWM channels in pins p1.1, p1.0,
p0.7 and p0.6

—

The following configurations need to be in the hardware.xml to enable the timer and BGScript execution.

<hardware>

<timer index =" 1" enabled_channels =" 0x1f " divisor =" 0 " mode =" 2 " alternate =" 2 " />
</hardware>

& Notice that PWMs do not work when the device is in a sleep mode.

Copyright © 2001-2013 Bluegiga Technologies Page 28 of 45

5.3 Timers

This section describes how to use timers with BGscript.

5.3.1 Continuous timer generated interrupt

This example shows how to generate continuous timer generated interrupts

Enabling timer generated interrupts

Boot event listener
event system boot(mejor ,mnor ,patch ,build ,Il_version ,protocol _version ,hw)

#Set tiner to generate event every 1s
call hardware_set_soft_tiner(32768, 1, 0)

end
#Ti mer event |istener
event hardware_soft_tinmer(handl e)

#Code that you want to execute once per 1s

end

Even with a soft timer running the module can enter sleep mode 2, in which power consumption is about 1pA.
Sleep mode 3 is entered only if there are no timers running and the module is not having any scheduled radio
activity.

One active timer

=y

There can only be one timer running at the same time. Please stop the currently running timer by
issuing call hardware_set_soft_timer(0, {handle}, {singleshot}) before launching the next one.

Copyright © 2001-2013 Bluegiga Technologies Page 29 of 45

5.3.2 Single timer generated interrupt

The 2nd example shows how to set a timer, which is called only once. This is useful, when some action needs to
be implemented only once, like the change of advertisement interval in Proximity profile.

In this example in the beginning the device advertises quickly, but after 30 seconds the advertisement interval is
reduced, in order to save battery.

Using timer once

Boot event |istener
event system boot (maj or, m nor, patch, build, || _version, protocol, hw)

Set advertisenent paranmeters according to the Proximity profile
Mn interval 20ns, max interval 30ms, use all 3 channels
call gap_set_adv_paraneters(32, 48, 7)

Enabl ed adverti senent
Limted discovery, Undirected connectable
call gap_set_node(1, 2)

Start timer

single shot, 30 secods, tiner handle = 1

call hardware_set_soft_tinmer($F0000, 1, 1)
end

Tinmer event |istener
event hardware_soft_timer(handl e)

run the code only if timer handle is 1
if handle = 1 then

Stop advertisenent

call gap_set_node(0, 0)

#Reconfi gure paraneters
Mn interval 1000nms, nax interval 2500ns, use all 3 channels
call gap_set_adv_paraneters(1600, 4000, 7)

Enabl ed adverti senent
Limted discovery, Undirected connectable
call gap_set_node(1, 2)

end if

end

Copyright © 2001-2013 Bluegiga Technologies Page 30 of 45

5.4 USB and UART endpoints

This section describes the usage of endpoints, which can be used to send or receive data from interfaces like
UART or USB.

5.4.1 UART endpoint

The example shows how to send data to USART1 endpoint from BGScript.

Writing to USB endpoint

System start/boot |istener
event system boot (maj or, m nor, patch, build, || _version, protocol, hw)

Start continuous tinmer with 1 second interval. Handle ID 1
1 second = $8000 (32.768kHz crystal)
call hardware_set_soft_tiner($8000, 1, 0)

end

Tinmer event(s) listener
event hardware_soft_tinmer(handl e)

1 second tiner expired
if handle = 1 then
call system endpoint _tx(5, 14, "TIMER EXPI RED\ n")
end if
end

=, The following configurations need to be in the hardware.xml to enable the UART interface and allow
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>
<usart channel="1" alternate="1" baud="115200" endpoint="none" />

<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page 31 of 45

5.4.2 USB endpoint

The example shows how to send data to USB endpoint from BGScript.

Writing to USB endpoint

System start/boot |istener
event system boot (major, m nor, patch, build, || _version, protocol, hw)

Start continuous tinmer with 1 second interval. Handle ID 1
1 second = $8000 (32.768kHz crystal)
call hardware_set_soft_tiner($8000, 1, 0)

end

Tinmer event(s) |istener
event hardware_soft_tinmer(handl e)

1 second tinmer expired
if handle = 1 then
call system endpoint_tx(3, 14, "TIMER EXPlI RED\n")
end if
end

+, The following configurations need to be in the hardware.xml to enable the USB interface and allow
BGscript to access it.

<?xml version="1.0" encoding="UTF-8" ?>

<hardware>

<usb enable="true" endpoint="none" />
<script enable="true" />
</hardware>

Copyright © 2001-2013 Bluegiga Technologies Page 32 of 45

5.5

Attribute Protocol (ATT)

This section contains BGscript examples related to Attribute Protocol (ATT) events.

5.5.1 Catching attribute write event

The example shows to to catch an event when remote devices writes an attribute over a Bluetooth connection. A
simple FindMe example is used where the remote device writes a single value to the local GATT database
indicating the alert level.

Catching an attribute write

Listen for GATT wite events
event attributes_val ue(connection, reason, handle, offset, value_len, value)

end

Read the val ue and enabl e correspondi ng al ert
| evel =val ue(0: 1)
if level =0 then

TODO Execute an action corresponding "No alert" status.
end if
if level =1 then

TODO Execute an action corresponding "M1d alert" status.
end if
if level =2 then

TODO Execute an action corresponding "High alert" status.
end if

Copyright © 2001-2013 Bluegiga Technologies Page 33 of 45

5.6 Generic Attribute Profile (GATT)

This section shows examples how to manager the local GATT database.

5.6.1 Changing device name

The example below shows how to change the device name using BGScript.

In this example we use the following GATT database:

gatt.xml

<servi ce uui d="1800">
<descri pti on>CGeneric Access Profile</description>

<characteristic uuid="2a00" id="xgatt_nane">
<properties read="true"/>
<val ue>01020304050607</ val ue>
</characteristic>

<characteristic uuid="2a0l1">
<properties read="true" const="true" />
<val ue type="hex">4142</val ue>
</characteristic>
</ service>

To write a new value into the characteristic defined in the gatt.xml following code needs to be used. Please note
that the id must be the same as in the gatt.xml.

Generate Friendly name in ASCl
nane(0: 1) =$42
nanme(1: 1) =$47
name(2: 1) =$53
name(3: 1) =$63
nane(4:1)=$72
nane(5: 1) =$69
nane(6: 1) =$70
nane(7:1)=$74

#Wite nane to |local GATT
call attributes_wite(xgatt_nane, 0, 7, name(0:7))

Copyright © 2001-2013 Bluegiga Technologies Page 34 of 45

5.6.2 Writing to local GATT database

To write to the local GATT database you first need to define a characteristic under a service in your GATT
database (gatt.xml). You also need to assign an id parameter for the characteristic, which can then be used in
BGScript to write the value.

In this example we use the following GATT database:

gatt.xml

<servi ce uui d="1809">
<descri pti on>Heal th Ther nonet er Servi ce</description>

<characteristic uuid="2alc" id="xgatt_tenperature_cel sius">
<descri pti on>Cel si us tenperature</description>
<properties indicate="true"/>
<val ue type="hex">0000000000</val ue>
</ characteristic>
</ servi ce>

To write a new value into the characteristic defined in the gatt.xml following code needs to be used. Please note
that the id must be the same as in the gatt.xml.

#wite 5 bytes fromtnp array to attribute with offset 0
call attributes_wite(xgatt_tenperature_celsius,0,5,tnp(0:5))

Copyright © 2001-2013 Bluegiga Technologies Page 35 of 45

5.7 PS store
These examples show how to read and write PS-keys.

5.7.1 Writing a PS keys

The example shows how to write an attribute written by a remote Bluetooth device into PS store.

Writing to PS store

Check if rempte device wites a value to the GATT and wite it to a PS key 0x8000
Catch an attribute wite
event attributes_val ue(connection, reason, handle, offset, value_len, value_data)

Check if handle value 1 is witten
if handle = 1
Wite attribute value to PS-store
call flash_ps_save($8000, val ue_len, value_data(0:value_|len))
end if
end

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

Copyright © 2001-2013 Bluegiga Technologies Page 36 of 45

5.7.2 Reading a PS keys

The example shows how to read a value from the local PS store and write it to GATT database.

Reading PS store

#lnitialize a GATT value froma PS key, which is 2 bytes |ong
call flash_ps_| oad($8000) (result, |enl, datal(0:2))

Wite the PS value to handle with I D "xgatt_PS val ue"
call attributes_wite(xgatt_PS value, 0, lenl, datal(0:lenl))

PS keys from 8000 to 807F can be used for persistent storage of user data.
Each key can store up to 32 Bytes.

Copyright © 2001-2013 Bluegiga Technologies Page 37 of 45

5.8 Advanced scripting examples
This section shoes more advanced scripting examples where several functions are made.

5.8.1 Catching IO events and exposing them in GATT

This example shows hot to catch I/O events and exposing them via a custom service in GATT data base.

he example service look like the one below and the I/O characteristic has read and notify properties

gatt.xml

<servi ce uui d="00431c4a- a7a4- 428b- a96d- d92d43c8c7cf" >
<descri pti on>Bl uegiga | O service</description>
<characteristic uuid="f1lb4lcde-dbf5-4acf-8679-ech8b4dcabfe" id="xgatt_io">
<properties read="true" notify="true"/>

nwan

</characteristic>
</ service>

In order to catch the I/O events and write them to GATT database the following event handled is used in
BGScript code.

script.bgs

#HWinterrupt |istener
event hardware_i o_port_status(delta, port, irqg, state)

Wite |/O status to GATT

call attributes_wite(xgatt_io,0,1,irq)
end

On DKBLE112 development kit there are buttons in 1/0O pins PO_0 and PO_1 and in order for this example to
work with DKBLE112 the following configuration is needed in hardware.xml.

hardware.xml

<port index="0" pull="down" />

Copyright © 2001-2013 Bluegiga Technologies Page 38 of 45

5.9 Bluegiga Development Kit Specific Examples

This section contains examples specific to the Bluegiga BLE development kits.

5.9.1 Display initialization

The example below shows how to initialize the display in the BLE development kit and and how to write data to

It.

The supported commands can be found from the displays data sheet as well the initialization sequence.

DKBLE112 display initialization

Boot event |istener
event system boot (maj or, mi nor, patch, buil d, || _version, protocol, hw)

end

=y

Set display to command node
call hardware_io_port_wite(1, $3, $1)
call hardware_i o_port_config_direction(1, $7)

Initialize the display (see NHDCO216CZFSWFBWBV3 dat a sheet)
call hardware_spi_transfer(0, 11, "\ x30\ x30\ x30\ x39\ x14\ x56\ x6d\ x70\ x0c\ x06\ x01")

Set display to data node

Wite "Hello world\!" to the display.

call hardware_io_port_wite(l, $3, $3)

call hardware_spi_transfer(0,12,"Hello world\!")

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

Copyright © 2001-2013 Bluegiga Technologies

Page 39 of 45

5.9.2 FindMe demo

The example script implements a simple FindMe profile device. The alert status is displayed on the BLE
development kit's display when remote device changes the status.

Boot event

SPI configuration in hardware.xml
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 FindMe Target

listener

event system boot (maj or, mi nor, patch, build, || _version, protocol, hw)

Put display into command node
hardware_io_port_wite(1, $3, $1)
har dware_i o_port_config_direction(1, $7)

call
cal |

Configure Display

call

har dwar e_spi _transfer (0, 11, "\ x30\ x30\ x30\ x39\ x14\ x56\ x6d\ x70\ x0c\ x06\ x01")

Put display into data nmbde and wite
hardware_io_port_wite(1, $3, $3)
har dwar e_spi _transfer(0,12,"Find Me Denp")

cal |
cal |

Set advertisenment paranmeters according to the Proximty profile.

i nterval

end

call

2000ns,

use all

3 channel s

gap_set _adv_par anet ers(1600, 3200, 7)

Start advertisenent and enabl e pairing node
gap_set _node(gap_gener al _di scover abl e, gap_undi r ect ed_connect abl e)
sm set _bondabl e_node(1)

cal |
call

Listen for GATT wite events
event attributes_val ue(connection, reason, handle, value_len, value)

end

Di sconnection event

Put display to conmand npbde and nove cursor to position 40
hardware_i o_port_wite(1,$3, $1)
har dwar e_spi _transfer (0, 1, "\xc0")

cal l
cal |

#di spl ay to data node

cal |

hardware_i o_port_wite(1,$3, $3)

Read val ue and enabl e corresponding al ert
| evel =val ue(0: 1)
if level =0 then

call

end if
if level =1 then

cal l

end if
if level =2 then

call

end if

hardware_spi _transfer(0,10,"No Alert ")

har dwar e_spi _transfer(0,10,"M1d Alert")

har dwar e_spi _transfer(0,10,"Hi gh Alert")

i stener

event connection_di sconnect ed(handl e, result)
Restart advertisenent
gap_set _node(gap_general _di scover abl e, gap_undi rect ed_connect abl e)

end

call

Copyright © 2001-2013 Bluegiga Technologies

Mn interval

1000nms, nax

Page 40 of 45

5.9.3 Temperature and battery readings to display

The example below shows how to initialize the display in the BLE development kit and and how to write
temperature and battery (using potentiometer) readings into it.

The supported commands can be found from the displays data sheet as well the initialization sequence.

SPI configuration in hardware.xm|
<usart channel="0" mode="spi_master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

DKBLE112 display, battery and temperature sensors

dimstring(3)
dmmlliv
dimtnp(4)
di m of f set
di m cel si us

Boot event |istener
event system boot (maj or, mi nor, patch, build, || _version, protocol, hw)
Initialize the display (see NHD C0216CZ- FSW FBW 3V3 dat a sheet)
call hardware_io_port_wite(l1, $7, $1)
call hardware_io_port_config direction(1,$7)
call hardware_spi _transfer (0, 11, "\ x30\ x30\ x30\ x39\ x14\ x56\ x6d\ x70\ xOc\ x06\ x01")
call hardware_io_port_wite(1, $7, $3)

Wite "Batt.: " to the display.
call hardware_spi _transfer(0,7,"Batt.: ")

Change di splay data address
call hardware_io port_wite(1, $7, $1)
call hardware_spi _transfer (0,1, "\xc0")

Wite "Tenp.: " to the displays 2nd line
call hardware_io_port_wite(l1, $7, $3)
call hardware_spi_transfer(0,7,"Tenmp.: ")

Start timer @ ~2sec interval
call hardware_set_soft_tiner($ffff, 0 ,0)
end

Timer event |istener

event hardware_soft_timer(handl e)
#read potentioneter for battery
call hardware_adc_read(6, 1, 2)
#read internal tenperature
call hardware_adc_read(14, 3,0)

end

Copyright © 2001-2013 Bluegiga Technologies Page 41 of 45

DKBLE112 display, battery and temperature sensors (CONTINUED)

#ADC event |istener
event hardware_adc_resul t (i nput, val ue)

Received battery reading

if (input = 6) then
#Convert HEX to STRI NG
mlliv=val ue/ 11+8

tnmp(0:1) = (milliv/1000) + (milliv / 10000*-10) + 48
tmp(1:1) = (milliv/100) + (milliv / 1000*-10) + 48
tmp(2:1) = (mlliv/10) + (milliv / 100*-10) + 48
tmp(3:1) = (mlliv) + (mlliv / 10*-10) + 48

Change di spl ay data address
call hardware_io_port_wite(l, $7, $1)
call hardware_spi _transfer (0,1, "\x87")

Wite battery val ue

call hardware_io_port_wite(l, $7, $3)

call hardware_spi _transfer(0,4,tnp(0:4))

call hardware_spi _transfer(0,3," m")
end if

Received tenperature reading
if (input = 14) then
of f set =- 1490

ADC value is 12 MSB

celsius = value / 16

Cal cul ate tenperature

ADC*V_ref/ADC max / T_coeff + offset

cel sius = (10*cel sius*1150/2047) * 10/ 45 + offset

#Convert HEX to STRI NG

string(0:1) = (celsius / 100) + 48
string(1:1) = (celsius / 10) + (celsius / -100 * 10) + 48
string(2:1) = celsius + (celsius / 10 * -10) + 48

Change di spl ay data address
call hardware_io_port_write(1,$7, $1)
call hardware_spi _transfer(0,1,"\xc7")

Wite tenperature val ue
call hardware_io_port_write(1,$7, $3)
call hardware_spi _transfer(0,2,string(0:2))
call hardware_spi _transfer(0,1,".")
call hardware_spi _transfer(0,1,string(2:1))
call hardware_spi _transfer (0,1, "\xf2")
call hardware_spi _transfer(0,1,"C")
end if
end

Copyright © 2001-2013 Bluegiga Technologies Page 42 of 45

5.10 BGScript tricks

5.10.1 HEX to ASCII

Printing local BT address on the display in DKBLE112

dimt(12)

di m addr (6)

event system boot (maj or, m nor, patch, build, || _version, protocol, hw)
call hardware_io_port_wite(l, $7, $1)
call hardware_i o_port_config_direction(1, $7)

#lnitialize the display
call hardware_spi _transfer (0, 11, "\ x30\ x30\ x30\ x39\ x14\ x56\ x6d\ x70\ xOc\ x06\ x01")
call hardware_io port_wite(l1, $7, $3)

#Get | ocal BT address
call system address_get()(addr(0:6))

t(0:1) = (addr(5:1)/$10) + 48 + ((addr(5:1)/$10)/10*7)
t(1:1) = (addr(5:1)&$f) + 48 + ((addr(5:1)&$f)/10*7)
t(2:1) = (addr(4:1)/$10) + 48 + ((addr(4:1)/$10)/10*7)
t(3:1) = (addr(4:1)&$f) + 48 + ((addr(4:1)&$f)/10*7)
t(4:1) = (addr(3:1)/$10) + 48 + ((addr(3:1)/$10)/10*7)
t(5:1) = (addr(3:1)&%$f) + 48 + ((addr(3:1)&S$f)/10*7)
t(6:1) = (addr(2:1)/$10) + 48 + ((addr(2:1)/$10)/10*7)
t(7:1) = (addr(2:1)&%$f) + 48 + ((addr(2:1)&$f)/10*7)
t(8:1) = (addr(1:1)/$10) + 48 + ((addr(1:1)/$10)/10*7)
t(9:1) = (addr(1:1)&$f) + 48 + ((addr(1:1)&$f)/10*7)
t(10:1) = (addr(0:1)/$10)+ 48 + ((addr(0:1)/$10)/10*7)
t(11:1) = (addr(0:1)&%$f) + 48 + ((addr(0:1)&$f)/10*7)

call hardware_spi _transfer(0,12,t(0:12))
end

5.10.2 UINT to ASCII

To display sensor readings in the display, integer values must be converted to ASCII. Currently there is no
build-in function for doing this in the BGScript, but the following function can be used to convert integers to
ASCIL:

a = (rh/100)
b =(rh/10) + (rh /-100 * 10)
c=rh+(rh/10*-10)

And as BGScript code:

Converting 3 digit interger to ASCII

di m data
di mstring(3)

string(0:1) = (data / 100) + 48
string(1:1) = (data / 10) + (data / -100 * 10) + 48
string(2:1) = data + (data / 10 * -10) + 48

To present the string in the display of the evaluation kit please refer to DKBLE112 display initialization --
BGScript

Copyright © 2001-2013 Bluegiga Technologies Page 43 of 45

6 BGScript editors

This section contains different tips and tricks for editors and IDEs.

6.1 Notepad ++

Notepad++ is very flexible text editor for programming purposes. Application and documentation can be
downloaded from http://notepad-plus-plus.org/.

6.1.1 Syntax highlight for BGScript

Notepad++ doesn't currently contain syntax highlighting for BGScript by default. You can however download
syntax highlighting rules defined by Bluegiga.

Installing the BGScript syntax highlight rules into Notepad++ is easy:

1. Download the syntax highlighting rules from http://techforum.bluegiga.com/ble112/
Import the highlighting rules to Notepad++ : View->User-Defined Dialogue->Import.
3. When editing the code, enable syntax highlighting from : Language -> BGscript

N

@ Notepad ++: How to create your own Syntax Highlighting scheme

http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

Copyright © 2001-2013 Bluegiga Technologies Page 44 of 45

http://notepad-plus-plus.org/
http://techforum.bluegiga.com/ble112/
http://sourceforge.net/apps/mediawiki/notepad-plus/index.php?title=User_Defined_Languages

Contact information

Sales:

Technical support:
Orders:

WWW:

Head Office / Finland:

Head address / Finland:

Sales Office / USA:

Sales Office / Hong-Kong:

sales@bluegiga.com

http://www.bluegiga.com/support/

orders@bluegiga.com
http://www.bluegiga.com

Phone: +358-9-4355 060
Fax: +358-9-4355 0660
Sinikalliontie 5 A

02630 ESPOO
FINLAND

P.O. Box 120
02631 ESPOO
FINLAND

Phone: +1 770 291 2181
Fax: +1 770 291 2183

Bluegiga Technologies, Inc.
3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Phone: +852 3182 7321
Fax: +852 3972 5777

Bluegiga Technologies, Inc.
Unit 10-18, 32/F, Tower 1, Millennium City 1,

388 Kwun Tong Road, Kwun Tong, Kowloon,

Hong Kong

Copyright © 2001-2013 Bluegiga Technologies

Page 45 of 45

http://www.bluegiga.com/support/
http://www.bluegiga.com/

	Version History
	BGScript Scripting Language
	BGScript Syntax
	Comments
	Variables and Values
	Values
	Variables
	Example

	Global Variables
	Constant Variables
	Buffers
	Usage
	Using Buffers with Expressions

	Strings

	Expressions
	Commands
	event <event_name> (< event_parameters >)
	if <expression> then [else] end if
	while <expression> end while
	call <command name>(<command parameters>..)[(response parameters)]
	let <variable> = <expression>
	sfloat(mantissa , exponent)
	float(mantissa , exponent)
	memcpy(destination, source , length)
	memcmp(buffer1 , buffer2 , length)
	memset(buffer , value , length)

	Procedures
	Multiple script files
	import
	export

	BGScript Limitations
	32-bit resolution
	Declaration required before use
	DIM variable size
	Reading internal temperature meter disabled IO interrupts
	Writing data to an endpoint, which is not read
	No interrupts on Port 2
	Performance

	Example BGscripts
	Basics
	Catching system start-up
	Catching Bluetooth connection event
	Catching Bluetooth disconnection event

	Hardware interfaces
	ADC
	I2C
	IO
	IO wake-up
	Writing IO status

	SPI
	Writing SPI
	Reading SPI

	Generating PWM signals

	Timers
	Continuous timer generated interrupt
	Single timer generated interrupt

	USB and UART endpoints
	UART endpoint
	USB endpoint

	Attribute Protocol (ATT)
	Catching attribute write event

	Generic Attribute Profile (GATT)
	Changing device name
	Writing to local GATT database

	PS store
	Writing a PS keys
	Reading a PS keys

	Advanced scripting examples
	Catching IO events and exposing them in GATT

	Bluegiga Development Kit Specific Examples
	Display initialization
	FindMe demo
	Temperature and battery readings to display

	BGScript tricks
	HEX to ASCII
	UINT to ASCII

	BGScript editors
	Notepad ++
	Syntax highlight for BGScript

