
Startup, Simulation, and Automation

1 Prerequisites

For this laboratory you have to checkout the snippets from the corresponding module repository - btf4220-
digital. If you did previous exercises only a repository update is requires. Make sure you committed all your
local changes, first.

1. Open a terminal (CLI) and change to the home folder by executing the command:

cd ~

2. Create your working directory or change into it. See procedure in laboratory1 if you need further
guidance.

3. Checkout the repository or update it by executing the clone or pull command, respectively:

git clone git://pm.ti.bfh.ch/btf4220-digital.git

git pull

4. Switch to the directory of this laboratory3 by executing the command:

cd ~/praktika/btf4220-digital/laboratory2

IMPORTANT: All the following steps are executed on the server xena unless explicitly noted otherwise.
Hence make sure you establish a remote session before performing the steps below.

2 Simple circuit design

In this laboratory we are going to learn the FPGA design-flow as depicted in Figure 1. We step in at the

Figure 1: Simplified diagram of a FPGA design-flow.

HDL level shown in Figure 1. The circuit we are going to use for this exercise is depicted in Figure 2.

Assignment 1

In the directory ∼/praktika/btf4220-digital/laboratory2/vhdl you will find the example files:

dffESR-entity.vhdl

dffESR-behavior-generic.vhdl

The file dffESR-entity.vhdl is complete and describes the inputs and output of the circuit. If you
modify it use Git to keep track of your modifications.

git commit <FILE_TO_COMMIT> -m"<YOUR_COMMIT_MESSAGE>"

The file dffESR-behavior-generic.vhdl contains the skeleton of the functionality of the circuit depicted
in Figure 2. Complete this file by writing the processes (implicit and/or explicit) to realize its functionality.

Figure 2: Block diagram of a D-flipflop with synchronous reset and enable.

HuCE-microLab 1 Laboratory 1

Startup, Simulation, and Automation

3 Simulation

We are going to simulate the VHDL circuit description written in Assignment 1. For this purpose log-in to
the server and change to the directory:

cd ~/praktika/btf4220-digital/laboratory2/sandbox

Before continuing make sure you are in the correct directory! Execute following commands:

rm -rf work # This command will remove the simulation library.

vlib work # This command will create a new simulation library.

#

vcom ../vhdl/dffESR-entity.vhdl # This command will compile the entity.

vcom ../vhdl/dffESR-behavior-generic.vhdl # This command will compile your VHDL

description of the circuit shown in

Figure above. If you get errors, fix

them and repeat this step until this

file compiles without errors.

vsim -t ps dffESR # This command will start the ModelSim GUI and will start a

simulation (-t ps sets the simulation mode to ps accuracy).

Assignment 2

We are now going to simulate all possible combinations of the inputs to verify the functionality of the block.
Start up the “wave” window by executing the command shown below in the ModelSim command window.

add wave -hex *

A window should pop-up with all inputs and outputs of the circuit. Next we have to provide the simulator
with stimuli. For the ports ClkxCI and RstxRI you can use the commands:

force ClkxCI 0 0ns, 1 10ns -repeat 20ns

force RstxRI 1 0ns , 0 100ns

Formulate the test pattern for the inputs DxDI and EnaxSI such that all possibilities are covered.

NOTE: The clock is a 50MHz clock. For how long xns do we need to simulate? Perform this simulation
by the command:

run x ns

4 Automated simulation

For this simple example it is “easy” to type in all commands or to “click” in the GUI; however, in complex
designs with a lot of error prone components we require (1) reproducibility and (2) exclusion of errors due
to typing and/or clicking mistakes. For this purpose most industrial tools provide us with command-line
interface (CLI) that can be used in an automated environment that guarantees the above two items. In this
assignment we are going to use such an automated environment to redo the previous simulation.
The automated environment is already partially in place and uses the GNU make and command line utilities.
The goal of this assignment is not to understand the automated flow, but to use it.

Assignment 3

On the server change to the directory: ∼/praktika/btf4220-digital/laboratory2/.
Execute in the terminal the command make. You will see a small explanation of the make targets. Execute
in the terminal the command make clean to remove all temporary files from the sandbox directory.

IMPORTANT: Before executing this command make sure that you copy any file in the sandbox direc-
tory that you want to keep!

HuCE-microLab 2 Laboratory 1

Startup, Simulation, and Automation

For the automated simulation there are two important files, namely (1) config/project.files and (2) con-
fig/project.force. The first file contains all the names of the vhdl files that are required for the simulation
whilst the latter contains the commands required for the simulation. The file config/project.files is already
complete; however, you need to add the commands used in Assignment 2 to the file config/project.force.
After having added these commands to this file execute the command make sim in the terminal and see
that you get automatically the same simulation as performed manually in Assignment 2.

5 FPGA toplevel

Figure 3: Block diagram of the FPGA toplevel given a certain design.

In a FPGA design flow it is good practice to generate a toplevel for each design as shown in Figure 3. This
toplevel is used to connect the design to the external pins of the FPGA. Furthermore, the transformation
of uni-directional (IN/OUT) into bi-directional (INOUT) is performed and eventual needed tri-state buffers
are only inserted at this level.

Assignment 4:

Inspect the architecture of the file lab2Top-behavior-xilinx.vhdl on how to use the component declaration.

6 Synthesis

Figure 4: The synthesis step converts the VHDL sources into an optimized netlist.

The first step in the transformation towards a hardware implementation is the synthesis step. For both
the FPGA as well as the ASIC flow this step is performed. The synthesis transforms the VHDL code into
logical functions, optimizes it to achieve a minimal implementation, and writes out an intermediate netlist
that is target dependent (e.g., Xilinx FPGA, Altera FPGA, ASIC, etc.). This intermediate netlist is in
Electronic Design Interchange Format (EDIF).

One could expect that the synthesis tool only requires the functionality contained in the VHDL files and
optimize for the smallest logic function; however, most designs require a predefined timing and the smallest
logic function does not guarantee the least area taken. Therefore, the synthesis tool requires besides the
functionality contained in the VHDL-files also information about the target platform, e.g., FPGA, ASIC,
etc.

As each target requires some specific optimizations there exists several synthesis tools that are optimized
for a specific target. Synopsis Design Compiler is a synthesis tool optimized for the ASIC target, whilst
Synopsys Synplify Premier DP is optimized for the various FPGA targets. In the rest of this course we will
use the latter tool.

7 Automated synthesis

The synthesizer requires as stated before two important portions of information, namely:

The functionality : This information is provided in the VHDL file(s). For the automation to be able
to provide the synthesizer with the names of the VHDL files to use, they are listed in file called
project.files in the config directory. In case of a hierarchical design, the synthesizer also requires to
know the toplevel of the design. The name of this toplevel is provided by the file project.toplevel in
the config directory. NOTE: VHDL does not make a difference between capitals and non capitalized
characters; therefore, the toplevel can be specified in either capitals or in a non capitalized version.

The target platform : This information is dependent on the FPGA or CPLD used. The specification of
the target platform is dependent on the synthesis tool and is provided in the file project.device in
the config directory.

HuCE-microLab 3 Laboratory 1

Startup, Simulation, and Automation

For this laboratory both files are given. For the rest of the laboratories the file project.device will always
be used as is, as we use for all the laboratories the same hardware; however, for the other laboratories the
files project.files and project.toplevel need to be adapted accordingly.

Assignment 5:

To start an automated synthesis, execute the command make synth in the directory /praktika/btf4220-
digital/laboratory2/.

TROUBLESHOOTING: It can happen that the synthesis tool does not complete its tasks. To identify
the errors/warnings inspect the file <TOPLEVEL NAME>.srr in the directory sandbox/synth/. This
file contains the log file of the synthesis tool. <TOPLEVEL NAME> is the name specified in the file
projects.toplevel in the config directory.

8 Place & Route

Figure 5: The place & route step converts the optimized netlist into a hardware implementation.

The second step in the transformation towards a hardware implementation is the place & route step.
This step is highly target dependent and almost every FPGA/ASIC company provides its own tools. For
this laboratory we will use the Xilinx ISE suite.

To perform the place & route step, the place & route (PAR) tool requires two portions of information,
namely:

1. What. The tool requires to know the functionality and the target device. This information is provided
by the EDIF file generated by the synthesis tool.

2. Where. The tool also requires to know which ports of the design are connected to which pin of
the device (see Figure 3). This information is, amongst others, specified in the User Constraint File
(UCF).

9 Place & Route automation

To use the PAR tool in an automated fashion, the UCF-file needs to be provided. The user constraints are
listed in the file project.ucf in the config directory. As providing wrong information in this file may lead
to short-circuits, wrong connections, etc. You always have to let your supervisor check this file before contin-
uing. For this laboratory the file is already provided. Furthermore, the PAR tool has many parameters that
can be specified, the most important ones are provided in the file project.xilinx in the config directory.
This file will be used as is for all the other laboratories.

NOTE: As the PAR tool is dependent on the EDIF file there exists a natural dependence of the PAR tool
on the synthesis tool; therefore, the commandmake synth is superseeded by the commandmake xilinx bit
making the former redundant.

An example of the most important UCF definitions is shown below:
Clock definitions:

NET CLOCK LOC = AA12;

NET CLOCK TNM_NET = "CLOCK_50";

TIMESPEC TS_CLOCK_50 = PERIOD CLOCK_50 50 MHz HIGH 50 %;

Uncritical timing definition:

NET reset LOC = D8;

NET reset TIG;

Pin Assignment:

HuCE-microLab 4 Laboratory 1

Startup, Simulation, and Automation

NET LED LOC = W2;

NET SWITCH_n LOC = D1;

NET VGA_RED<2> LOC = X4;

NET VGA_RED<1> LOC = W5;

NET VGA_RED<0> LOC = T9;

Output driver:

NET my_netname FAST;

NET my_netname DRIVE = 12;

NET "*" IOSTANDARD = LVTTL;

Pullup/-down:

NET netname PULLUP;

NET netname PULLDOWN;

Combination of multiple instructions:

NET netname LOC = A1 | DRIVE = 2 | FAST;

Assignment 6:

To start an automated PAR, execute the command make xilinx bit in the directory /praktika/btf4220-
digital/laboratory2/.

TROUBLESHOOTING: It can happen that the PAR tool does not complete its tasks. There are a few
steps in the PAR, and each can run into problems. Ask your supervisor for help in case PAR does not
complete successfully.

10 Download and testing

If all went well, the PAR tool generated a device specific file called <TOPLEVEL NAME>.bit in the
directory sandbox. We can now test our design on the hardware by downloading the bit file to the FPGA.

IMPORTANT: The FPGA board is connected to your local machine and not to the server. The steps
below must, therefore, be executed on your local machine.

We can upload the bitfile to the FPGA by the Xilinx tool impact.

DEMO 1: Your supervisor will show how one can upload a bitfile to the FPGA board.

Assignment 7:

Upload your own design to the board and test it.

HuCE-microLab 5 Laboratory 1

