
Incremental ADC Datasheet ADCINC V 1.20
001-13251 Rev. *KIncremental ADC

Copyright © 2002-2013 Cypress Semiconductor Corporation. All Rights Reserved.

See AN2239, ADC Selection Guide for other converters.

For one or more fully configured, functional example projects that use this user module go to
www.cypress.com/psocexampleprojects.

Features and Overview
6- to 14-bit resolution
Optional synchronous 8-bit PWM output
Optional differential Input
Signed or unsigned data format
Sample rate up to 15.6 ksps (6-bit resolution)
Input range defined by internal and external reference options
Internal or external clock

Note If this user module is used with the 29K family, it consumes an additional 6 mA. As an alternative,
use the ADCINCVR User Module.

The ADCINC is a differential or single input ADC that returns a 6- to 14-bit result. The maximum
DataClock frequency is 8 MHz, but 2 MHz is the maximum frequency recommended for improved linearity.
This ADC may only be placed once due to its implementation, which uses the hardware decimator rather
than a digital block. This is the most resource-efficient ADC. A second order modulator may be
implemented with an additional switch-capacitor block, allowing better linearity with an 8-MHz DataClock.

Timing is implemented with an 8-bit PWM that gives you a modulated pulse width that is synchronous to
the input sample.

The ADCINC requires 2n–1 integration cycles to generate an output with n bits of resolution.

Resources

PSoC® Blocks API Memory (Bytes)
Pins (per
External

I/O)Digital
Analog

CT Analog SC Flash RAM

Modulators (1st or
2nd Order)

1st and
2nd 1st 2nd 1st 2nd

CY8C29xxx, CY8C24x94, CY8C23x33, CY7C64215, CY8CLED04/08/16, CY8CLED0xD, CY8CLED0xG,
CY8CTST120, CY8CTMG120, CY8CTMA120, CY8C28x45, CY8C28x43, CY8C28x52, CY8CPLC20,
CY8CLED16P01

1 0 1 2 273 322 8 1

CY8C27/24/22xxx,
CY8CLED08

1 0 1 2 226 275 8 1
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13251 Rev. *K Revised May 14, 2013

http://www.cypress.com/?rID=2641
http://www.cypress.com/psocexampleprojects

Incremental ADC
Figure 1. ADCINC Block Diagram

Quick Start
You can download a preconfigured example project from www.cypress.com/psocexampleprojects. To
create an ADCINC project:

1. In PSoC Designer, select New Project.
2. In the New Project dialog, choose Designer Only Project. Choose a name and location for the

project and click OK.
3. In the Select New Base Part dialog, select one of the devices that supports this user module. See

the Resources table at the beginning of this datasheet.
4. In the User Module Catalog, click to expand the selection of ADCs, then expand the ADCINC

folder. If the User Module Catalog is not visible, select View > User Module Catalog.
5. The ADCINC is available with a single stage modulator or a dual stage modulator. If you do not know

which version to use, you can review the datasheet by right clicking on one of the modulators and
selecting Datasheet to review the datasheet before deciding.

6. Right click on the user module and select Place.
Document Number: 001-13251 Rev. *K Page 2 of 24

http://www.cypress.com/psocexampleprojects

Incremental ADC
Functional Description
The ADCINC gives a first order modulator formed from a single analog switched capacitor PSoC block,
one digital PSoC block, and the decimator, as shown in the following figures:
Figure 2. Schematic of the ADCINC with First Order Modulator

Figure 3. Schematic of the ADCINC with Second Order Modulator

The range of the ADCINC is set at ±VRef. You can set VRef in the Global Resources window of PSoC
Designer. For fixed scale, VRef is set to VBandgap, or 1.6 VBandgap. For adjustable scale, VRef is set to Port
2[6]. For supply ratio metric scale, VRef is set to VDD/2.

The analog block is configured as an integrator that can be reset. Depending on the output polarity, the
reference control is configured so that the reference voltage is either added or subtracted from the input
and placed in the integrator. This reference control attempts to pull the integrator output back towards
AGND. If the integrator is operated 2Bits times and the output voltage comparator is positive "n" of those
times, the residual voltage (Vresid) at the output is:
Document Number: 001-13251 Rev. *K Page 3 of 24

Incremental ADC
Equation 1

Equation 2

This equation states that the range of this ADC is ±VRef, the resolution (LSB) is VRef/2Bits-1, and the
voltage on the output at the end of the computation is defined as the residue. Since Vresid is always less
than VRef, Vresid/2Bits less than half a LSB and can be ignored.

To enable the integrator to function as an incremental ADC, the digital resources used are:

A PWM to count the proper number of integration cycles.
A decimator, configured in the incremental mode, to accumulate the number of cycles that the output
comparator is positive.

Note CAUTION: When placing this module, it must be configured with the same source clock for both the
analog and digital blocks. Failure to do so causes it to operate incorrectly.

The PWM is set up to generate an interrupt every 256 counts. This causes the input to be sampled 64
times, which is equivalent to one integrate cycle. The decimator counter is set up to accumulate 2Bits/64 of
these integrate cycles. The accumulated value is sampled at the start and finish of the integrate time. A
single cycle is added to reset the integrator and process the answer.
Figure 4. Timing for ADCINC

Because the ACDINC control is interrupt based and the sample time is relatively long, it is unreasonable to
expect the processor to wait while a sample is being processed. The primary communication between the
ADC routine and the main program is a data-available flag that may be polled. APIs are available to check
the data flag and retrieve data.

The data handler is designed to be poll-based. If you need an interrupt-based data handler, application-
specific data handler code can be added to the interrupt routine, _ADCINC_ADConversion_ISR, located
in the assembly file ANDINCINT.asm. The point where you must insert the code is marked clearly.
Document Number: 001-13251 Rev. *K Page 4 of 24

Incremental ADC
The following frequency domain magnitude plot normalizes the frequency so the 14-bit sample rate, Fnom
= 1.0. The -3 dB point occurs at .443 ∞Fnom and zeros of the function occur at each integer multiple of FS.
Since the ADCINCPWM is set for a resolution of 14 bits, actually samples 16385 times faster than the
nominal output rate, the Nyquist limit is 8,192 higher, 13 octaves above Fnom, which significantly reduces
the requirements for an anti-alias filter. The Nyquist limit is 12 octaves for 13 bits of resolution, 11 octaves
for 12 bits of resolution, and so on.
Figure 5. Frequency Domain Magnitude Plot
Document Number: 001-13251 Rev. *K Page 5 of 24

Incremental ADC
DC and AC Electrical Characteristics
The following values are indicative of expected performance and based on initial characterization data.
Unless otherwise specified, TA = 25 °C, Vdd = 5.0 V, Power HIGH, Opamp bias LOW, output referenced
to 2.5 V external Analog Ground on P2[4] with 1.25 external Vref on P2[6].
Table 1. 5.0 V Second Order Modulator DC and AC Electrical Characteristics

Parameter Typical Limit Units Conditions and Notes

Input

Input voltage range --- Vss to Vdd V Ref Mux = Vdd/2 ± Vdd/2

Input capacitance1 3 --- pF

Input impedance 1/(C*clk) --- Ω

Resolution --- 8 Bits

Sample rate --- .125 to 31.25 ksps

SNR 46 --- dB

DC accuracy

DNL 0.1 --- LSB Column Clock 2 MHz

INL 0.5 --- LSB

Offset error 10 --- mV

Gain error

Including reference gain error 3.0 -- % FSR

Excluding reference gain error2 0.1 -- % FSR

Operating current

Low power 180 --- uA

Med power 840 --- uA

High power 3450 --- uA

Data clock --- 0.032 to 8.0 MHz Input to digital blocks and
analog column clock
Document Number: 001-13251 Rev. *K Page 6 of 24

Incremental ADC
Table 2. 5.0 V First Order Modulator DC and AC 5.0 V Electrical Characteristics (For 8-bit and 10-bit Resolutions)

Parameter Conditions and Notes Typical Limit Units

Input

Input voltage range Ref Mux = Vdd/2 ± Vdd/2 --- Vss to Vdd

Input capacitance1 3 --- pF

Input impedance 1/(C*clk) --- Ω

Resolution --- 8, 10 Bits

Sample rate --- .125 to 31.25 ksps

SNR 8-bit resolution 44 --- dB

10-bit resolution 56

DC accuracy

DNL Column Clock 2 MHz 0.6 --- LSB

INL Column Clock 2 MHz (8-bit
resolution)

0.7 --- LSB

Column Clock 2 MHz (10-bit
resolution)

0.8

Offset error Column Clock 2 MHz 5.0 --- mV

Gain error

Including reference gain error 3.0 -- % FSR

Excluding reference gain error2 0.1 -- % FSR

Operating current

Low power 8-bit resolution 50 --- uA

10-bit resolution 60

Med power 8-bit resolution 500 --- uA

10-bit resolution 520

High power 8-bit resolution 1900 --- uA

10-bit resolution 2000

Data clock Input to digital blocks and
analog column clock

--- 0.032 to 8.0 MHz
Document Number: 001-13251 Rev. *K Page 7 of 24

Incremental ADC
The following values are indicative of expected performance and based on initial characterization data.
Unless otherwise specified, TA = 25 °C, Vdd = 3.3 V, Power HIGH, OpAmp bias LOW, output referenced
to 1.64 V external Analog Ground on P2[4] with 1.25 external Vref on P2[6].
Table 3. 3.3 V Second Order Modulator DC and AC Electrical Characteristics

Parameter Typical Limit Units Conditions and Notes

Input

Input voltage range --- Vss to Vdd V Ref Mux = Vdd/2 ± Vdd/2

Input capacitance1 3 --- pF

Input impedance 1/(C*clk) --- Ω

Resolution --- 8 Bits

Sample rate --- .125 to 31.25 ksps

SNR 46 --- dB

DC accuracy

DNL 0.1 --- LSB Column Clock 2 MHz

INL 0.5 --- LSB

Offset error 10 --- mV

Gain error

Including reference gain error 3.0 -- % FSR

Excluding reference gain error2 0.3 -- % FSR

Operating current

Low power 130 --- uA

Med power 840 --- uA

High power 3370 --- uA

Data clock --- 0.032 to 8.0 MHz Input to digital blocks and
analog column clock
Document Number: 001-13251 Rev. *K Page 8 of 24

Incremental ADC
Table 4. 3.3 V First Order Modulator DC and AC Electrical Characteristics

Electrical Characteristics Notes

1. Includes I/O pin.
2. Reference Gain Error measured by comparing the external reference to VRefHigh and VRefLow routed

through the test mux and back out to a pin.

Parameter Typical Limit Units Conditions and Notes

Input

Input voltage range --- Vss to Vdd V Ref Mux = Vdd/2 ± Vdd/2

Input capacitance1 3 --- pF

Input impedance 1/(C*clk) --- Ω

Resolution --- 8 Bits

Sample rate --- .125 to 31.25 ksps

SNR 44 --- dB

DC accuracy

DNL 0.6 --- LSB Column Clock 2 MHz

INL 0.8 --- LSB

Offset error 6 --- mV

Gain error

Including reference gain error 3.0 -- % FSR

Excluding reference gain error2 0.3 -- % FSR

Operating current

Low power 50 --- uA

Med power 500 --- uA

High power 1900 --- uA

Data clock --- 0.032 to 8.0 MHz Input to digital blocks and
analog column clock
Document Number: 001-13251 Rev. *K Page 9 of 24

Incremental ADC
Placement
The first order modulator design requires two PSoC blocks, one digital, and one analog. The analog block
may be placed in any switched capacitor PSoC Block. The only considerations are input and clock
availability. The digital block, however, must be able to feed the hardware decimator. In the CY8C27xxx
family the qualified digital blocks are DBB01, DBB02, DBB11, and DCB12. In other device families any of
the digital blocks can be used. The same clock must be selected for both the digital block and the analog
block or this user module does not function correctly.

The second order modulator design requires a second switched capacitor PSoC block. Both analog blocks
must lie in the same column so they can share the column comparator bus. The digital block is subject to
the same restrictions for both first and second order modulators.

Although there are a number of placements possible for the analog and digital blocks, the ADCINC also
uses the PSoC device’s only hardware decimator. Only one ADCINC instance may be placed for a given
configuration. With dynamic reconfiguration, it is possible to load more than one configuration if the blocks
do not overlap. Though both instances appear to work, only the output of the one most recently loaded is
functional.

Parameters and Resources
After an ADCINC PWM instance is placed, these parameters must be configured for proper operation: the
Resolution, DataFormat, DataClock, PosInput Signal Multiplexer selection, NegInput Multiplexer selection,
NegInput gain, Clock Phase, Pulse Width, and PWM Output.

DataFormat
This selection determines the data format of the return result. Signed results are two’s complement
values with the selected resolution.

Resolution
This selection determines the data format of the return result. Valid resolution options are from 6 to
14 bits.

Data Clock
The Data Clock determines the sample rate. This clock goes to both PSoC blocks of the first order
modulator design and to all three PSoC block of the second order design.

Note IMPORTANT: It is imperative that the same clock is selected for both the digital block and the analog
column clock or this user module does not function correctly.

The Data Clock must not be set to less than 250 kHz when the CPU is running at 24 MHz. Otherwise,
it may be set as low as 125 kHz. The Data Clock may not exceed the CPU clock, it must always be
equal to or less than the CPU Clock. The PWM is set to provide an interrupt every 256 counts of the
Data Clock.The counter integrates the signal for 2Bits-6 of these cycles. An additional cycle is required
to reset the integrator and process the data. The sample rate is defined in Equation 3:

Equation 3
Document Number: 001-13251 Rev. *K Page 10 of 24

Incremental ADC
The maximum DataClock that can be used is 8 MHz. This is because of limitations in the Switched
Cap blocks. The maximum sample rate for each of the various bit rates can be calculated using an
8 MHz clock rate. The sample rates are listed in the following table:

The sample window determines the normal mode frequencies the ADC rejects. It is defined as:

Equation 4

To reject a higher frequency and its harmonics, select the sample window such that it is an even
multiple of the frequency-to-reject.

Clock Phase
The selection of the Clock Phase is used to synchronize the output of one analog PSoC block to the
input of another. The switched capacitor analog PSoC blocks use a two-phase clock (phi1, phi2) to
acquire and transfer signals. Normally, the input to the ADCINC is sampled on phi1. A problem arises
in that many of the user modules autozero their output during phi1 and only provide a valid output
during phi2. If such a module's output is fed to the ADCINC’s input, it acquires an autozeroed output
instead of a valid signal. The Clock Phase selection allows the phases to be swapped, so that the
input signal is acquired during phi2.

PosInput
The main input to the ADC. PSoC Designer allows you to select any legal input.

NegInput
Allows for the creation of a differential input for the ADC. This input can be weighted through the use
of the NegInput Gain parameter. If a single input as opposed to a differential input is desired then set
the NegInput Gain parameter value to “Disconnected". For the NegInput parameter, PSoC Designer
allows you to select any legal input.

Resolution Maximum Sample Rate

6-bit 15.6 ksps

7-bit 10.4 ksps

8-bit 6.25 ksps

9-bit 3.4 ksps

10-bit 1.8 ksps

11-bit 976 sps

12-bit 480 sps

13-bit 242 sps

14-bit 121 sps
Document Number: 001-13251 Rev. *K Page 11 of 24

Incremental ADC
NegInput Gain
Selects the Gain for the negative input. If single-ended input is desired, set this value to “Discon-
nected”.

PulseWidth
Allows PWM pulsewidth to set from a value 1 to 255 counts. If no value is set then the user module
automatically sets the PWM pulsewidth to 1 when the GetSamples function is called.

PWM Output
The Output parameter may be disabled or routed to one of four global output signals.

Interrupt Generation Control
The following parameter is only accessible when the Enable Interrupt Generation Control check box in
PSoC Designer is checked. This is available under Project > Settings... > Device Editor.

IntDispatchMode
The IntDispatchMode parameter is used to specify how an interrupt request is handled for interrupts
shared by multiple user modules existing in the same block but in different overlays. Selecting
“ActiveStatus" causes firmware to test which overlay is active before servicing the shared interrupt
request. This test occurs every time the shared interrupt is requested. This adds latency and also
produces a nondeterministic procedure of servicing shared interrupt requests, but does not require
any RAM. Selecting “OffsetPreCalc" causes firmware to calculate the source of a shared interrupt
request only when an overlay is initially loaded. This calculation decreases interrupt latency and
produces a deterministic procedure for servicing shared interrupt requests, but at the expense of a
byte of RAM.

Application Programming Interface
The Application Programming Interface (API) routines are provided as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the “include" files.
Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This “registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

Each time a user module is placed, it is assigned an instance name. By default, PSoC Designer assigns
the ADCINC_1 to the first instance of this user module in a given project. It can be changed to any unique
value that follows the syntactic rules for identifiers. The assigned instance name becomes the prefix of
every global function name, variable and constant symbol. In the following descriptions the instance name
has been shortened to ADCINC for simplicity.
Document Number: 001-13251 Rev. *K Page 12 of 24

Incremental ADC
ADCINC_Start

Description:
Performs all required initialization for this user module and sets the power level for the switched
capacitor PSoC block. The PWM is started.

C Prototype:
void ADCINC_Start (BYTE bPowerSetting)

Assembly:
mov A, bPowerSetting
lcall ADCINC_Start

Parameters:
bPowerSetting: One byte that specifies the power level. Following reset and configuration, the analog
PSoC block assigned to ADCINC is powered down. The symbolic names provided in C and assembly,
and their associated values, are listed in the following table:

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

ADCINC_SetPower

Description:
Sets the power level for the switched capacitor PSoC block.

C Prototype:
void ADCINC_SetPower (BYTE bPowerSetting)

Assembly:
mov A, bPowerSetting
lcall ADCINC_SetPower

Parameters:
bPowerSetting: Same as the bPowerSetting parameter used for the Start entry point.

Symbolic Name Value

ADCINC_OFF 0

ADCINC_LOWPOWER 1

ADCINC_MEDPOWER 2

ADCINC_HIGHPOWER 3
Document Number: 001-13251 Rev. *K Page 13 of 24

Incremental ADC
Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.

ADCINC_Stop

Description:
Sets the power level on the switched capacitor PSoC block to OFF.

C Prototype:
void ADCINC_Stop (void)

Assembly:
lcall ADCINC_Stop

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.

ADCINC_GetSamples

Description:
Runs the ADC for the specified number of samples.

C Prototype:
void ADCINC_GetSamples (BYTE bNumSamples)

Assembly:
mov A, bNumSamples
lcall ADCINC_GetSamples

Parameters:
bNumSamples: 8-bit value that sets the number of samples to be converted. As a value of ‘0’ causes
the ADC to run continuously.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
Document Number: 001-13251 Rev. *K Page 14 of 24

Incremental ADC
the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

ADCINC_StopADC

Description:
Immediately stops the ADC. PWM continues to run.

C Prototype:
void ADCINC_StopADC (void)

Assembly:
lcall ADCINC_StopADC

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.

ADCINC_fIsDataAvailable

Description:
Checks the availability of sampled data.

C Prototype:
BYTE ADCINC_fIsDataAvailable(void)

Assembly:
lcall ADCINC_fIsDataAvailable

Parameters:
None

Return Value:
Returns a nonzero value if data has been converted and is ready to read.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13251 Rev. *K Page 15 of 24

Incremental ADC
ADCINC_iGetData

Description:
Returns converted data as a signed integer. ADCINC_fIsDataAvailable() must be called to verify that
the data sample is ready.

C Prototype:
INT ADCINC_iGetData(void)

Assembly:
lcall ADCINC_iGetData ; Data will be in A and X upon return

Parameters:
None

Return Value:
Returns the converted data sample in 16-bit 2’s complement format.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

ADCINC_wGetData

Description:
Returns converted data as an unsigned integer. ADCINC_fIsDataAvailable() must be called to verify
that the data sample is ready.

C Prototype:
WORD ADCINC_wGetData(void)

Assembly:
lcall ADCINC_wGetData ; Data will be in A and X upon return

Parameters:
None

Return Value:
Returns the converted 16-bit unsigned data sample.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. This is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13251 Rev. *K Page 16 of 24

Incremental ADC
ADCINC_cGetData

Description:
Returns converted data as a signed char. ADCINC_fIsDataAvailable() must be called to verify that the
data sample is ready.

C Prototype:
CHAR ADCINC_cGetData(void)

Assembly:
lcall ADCINC_cGetData ; Data will be in A upon return

Parameters:
None

Return Value:
Returns the converted data sample in 8-bit 2’s complement format.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

ADCINC_bGetData

Description:
Returns converted data as an unsigned char. ADCINC_fIsDataAvailable() must be called to verify that
the data sample is ready.

C Prototype:
BYTE ADCINC_bGetData(void)

Assembly:
lcall ADCINC_bGetData ; Data will be in A upon return

Parameters:
None

Return Value:
Returns the converted 8-bit unsigned data sample.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13251 Rev. *K Page 17 of 24

Incremental ADC
ADCINC_iClearFlagGetData

Description:
Clears the data ready flag and gets converted data as signed integer. Checks to see that data flag is
still reset. If not the data is retrieved again. This ensures that the ADC interrupt routine did not update
the answer while it was being collected.

C Prototype:
INT ADCINC_iClearFlagGetData(void)

Assembly:
lcall ADCINC_iClearFlagGetData ; Data will be in A and X upon return

Parameters:
None

Return Value:
Returns the converted data sample in 16-bit 2’s complement format.

Side Effects:
The global variable ADCINC_bfStatus is set to zero. The A and X registers may be modified by this
or future implementations of this function. The same is true for all RAM page pointer registers in the
Large Memory Model (CY8C29xxx). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer
register is modified.

ADCINC_wClearFlagGetData

Description:
Clears the data ready flag and gets converted data as unsigned integer. Checks if the data-flag is still
reset. If the data-flag is not reset, the data is retrieved again. This ensures that the ADC interrupt
routine does not update the answer while it is being collected.

C Prototype:
WORD ADCINC_wClearFlagGetData(void)

Assembly:
lcall ADCINC_wClearFlagGetData ; Data will be in A and X upon return

Parameters:
None

Return Value:
Returns the converted 16-bit unsigned data sample.

Side Effects:
The global variable ADCINC_bfStatus is set to zero. The A and X registers may be modified by this
or future implementations of this function. The same is true for all RAM page pointer registers in the
Large Memory Model (CY8C29xxx). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer
register is modified.
Document Number: 001-13251 Rev. *K Page 18 of 24

Incremental ADC
ADCINC_cClearFlagGetData

Description:
Clears the data ready flag and gets converted data as signed char. Checks to see that data-flag is still
reset. If not the data is retrieved again. This makes sure that the ADC interrupt routine did not update
the answer while it was being collected.

C Prototype:
CHAR ADCINC_cClearFlagGetData(void)

Assembly:
lcall ADCINC_cClearFlagGetData ; Data will be in A upon return

Parameters:
None

Return Value:
Returns the converted data sample in 8-bit 2’s complement format.

Side Effects:
The global variable ADCINC_bfStatus is set to zero. The A and X registers may be modified by this
or future implementations of this function. The same is true for all RAM page pointer registers in the
Large Memory Model (CY8C29xxx). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer
register is modified.

ADCINC_bClearFlagGetData

Description:
Clears the data ready flag and gets converted data as an unsigned char. Checks to see that data-flag
is still reset. If not the data is retrieved again. This makes sure that the ADC interrupt routine did not
update the answer while it was being collected.

C Prototype:
BYTE ADCINC_bClearFlagGetData(void)

Assembly:
lcall ADCINC_bClearFlagGetData ; Data will be in A upon return

Parameters:
None

Return Value:
Returns the converted 8-bit unsigned data sample.

Side Effects:
The global variable ADCINC_bfStatus is set to zero. The A and X registers may be modified by this
or future implementations of this function. The same is true for all RAM page pointer registers in the
Large Memory Model (CY8C29xxx). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer
register is modified.
Document Number: 001-13251 Rev. *K Page 19 of 24

Incremental ADC
ADCINC_fClearFlag

Description:
Returns the contents of the data available variable and resets the flag.

C Prototype:
BYTE ADCINC_fClearFlag(void)

Assembly:
lcall ADCINC_fClearFlag

Parameters:
None

Return Value:
The returns the value of the status register.

Side Effect:
The global variable ADCINC_bfStatus is set to zero.The A and X registers may be modified by this or
future implementations of this function. The same is true for all RAM page pointer registers in the
Large Memory Model (CY8C29xxx). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer
register is modified.

ADCINC_WritePulseWidth

Description:
Changes the pulse width of the PWM.

C Prototype:
void ADCINC_WritePulseWidth(BYTE bPulseWidth)

Assembly:
mov A, bPulseWidth
lcall ADCINC_WritePulseWidth

Parameters:
bPulseWidth: This sets the width of the PWM. This value must not be zero or the ADC stops func-
tioning.

Return Value:
None.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Document Number: 001-13251 Rev. *K Page 20 of 24

Incremental ADC
Sample Firmware Source Code
The following sample code polls the Flag register and sends the data to a routine that shifts the data out
one of the I/O pins.

;;; Sample Code for the ADCINC
;;; Continuously Sample and Output Data to a pin.
;;;
;;; The user must provide the function to shift the data out.
;;;
include "m8c.inc" ; part specific constants and macros
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules
export _main
_main:
M8C_EnableGInt ; enable global interrupts
mov a,ADCINC_HIGHPOWER ; set Power
call ADCINC_Start
mov a,00h ; set ADC to continuous sampling
call ADCINC_GetSamples
loop1:
wait:
call ADCINC_fIsDataAvailable ; poll flag
jz wait
call ADCINC_iClearFlagGetData ; reset flag and retrieve data
;; call shift_it_out ; (user provided) send data to output pin
jmp loop1

The same project written in C is:

//--
// Sample C Code for the ADCINC
// Continuously Sample input voltage
//
//--
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
INT iData;
void main(void)
{
 M8C_EnableGInt; // Enable Global Interrupts
ADCINC_Start(ADCINC_HIGHPOWER); // Apply power to the SC Block
ADCINC_GetSamples(0); // Have ADC run continuously
for(;;){
while(ADCINC_fIsDataAvailable() == 0); // Loop until value ready
ADCINC_iClearFlagGetData(); // Clear ADC flag and get data
// Add user code here to use or display result
}
 }
Document Number: 001-13251 Rev. *K Page 21 of 24

Incremental ADC
Configuration Registers
Table 5. Registers used by the “ADC" Analog Switched Capacitor PSoC Block

The ADC uses one or two switched capacitor PSoC blocks. The blocks are configured to make an analog
modulator. To build the modulator, the blocks are configured to be an integrator with reference feedback
that converts the input value into a digital pulse stream. The input multiplexer determines what signal is
digitized.

ClockPhase controls the clock phase of the comparator within the switched cap blocks, as well as the
clock phase of the switches.

ACap contains binary encoding for 32 possible capacitor sizes for capacitor ACap.

InputSource field selects the input signal digitized by the converter. This parameter is set in the Device
Editor.

The AZ and FSW0 are used by the PWM interrupt handler and various APIs to reset the integrator.
Table 6. Registers used by the PWM Digital PSoC Block

The PWM is a digital PSoC block configured to have a timer with a period of 256 counts. At the interrupt,
the decimator is read and the ADC value is calculated.

Clock selects the input clock from one of 16 sources. This parameter is set in the Device Editor.
Note The source chosen must also be used to control the analog clock for the column where the ADC

block resides.

Enable empowers the PWM when set. It is modified and controlled by the ADCINC API.

Register 7 6 5 4 3 2 1 0

CR0 1 ClockPhas
e

0 ACap

CR1 PosInputSource NegInputGain

CR2 0 1 AZ 0 0 0 0 0

CR3 1 1 1 FSW0 NegInputSource 0 0

Register 7 6 5 4 3 2 1 0

Function 0 0 1 1 0 0 0 1

Input 0 0 0 1 Clock

Output 0 0 0 0 0 0 0 0

DR0 Timer Down Count Value (Never Accessed by the API)

DR1 1 1 1 1 1 1 1 1

DR2 PulseWidth

CR0 0 0 1 0 0 0 0 Enable
Document Number: 001-13251 Rev. *K Page 22 of 24

Incremental ADC
Table 7. Decimation Control Registers

Bit 7 6 5 4 3 2 1 0

DEC_CR0 0 0 0 0 ICLKS0 0 DCol DCLKS0

DEC_CR1 1 1 0 0 ICLKS1 DCLKS1

DEC_DH High Byte Output of Decimator

DEC_DL Low Byte Output of Decimator
Document Number: 001-13251 Rev. *K Page 23 of 24

Incremental ADC
Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Version Originator Description

1.1 DHA Added DRC to check if:

1. The source clock is different between digital and analog resources.

2. The ADC Clock is higher than CPU Clock.

1.20 DHA Restored VC3 as the source for the data clock.

1.20.b DHA Added 10-bit resolution data in DC-AC Characteristics table.

1.20.c HPHA Added design rules check for the situation when the ADC clock is faster than 8 MHz.
Document Number: 001-13251 Rev. *K Revised May 14, 2013 Page 24 of 24
Copyright © 2002-2013 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Quick Start
	Functional Description
	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Interrupt Generation Control

	Application Programming Interface
	ADCINC_Start
	ADCINC_SetPower
	ADCINC_Stop
	ADCINC_GetSamples
	ADCINC_StopADC
	ADCINC_fIsDataAvailable
	ADCINC_iGetData
	ADCINC_wGetData
	ADCINC_cGetData
	ADCINC_bGetData
	ADCINC_iClearFlagGetData
	ADCINC_wClearFlagGetData
	ADCINC_cClearFlagGetData
	ADCINC_bClearFlagGetData
	ADCINC_fClearFlag
	ADCINC_WritePulseWidth

	Sample Firmware Source Code
	Configuration Registers
	Version History

