ProxID Reader GP30

Data Sheet June 7, 1999 Rev1.41

The GP30 is a very high performance proximity reader featuring long range and small dimensions. The unit will run from any voltage from 5 to 13.5vdc. The GP30 features high read range at voltages as low as 5 volts making it ideally suited to a wide variety of applications, particularly access control.

Power Requirements 5-13.5 volt regulated DC. at 65 mA typical with a 12v

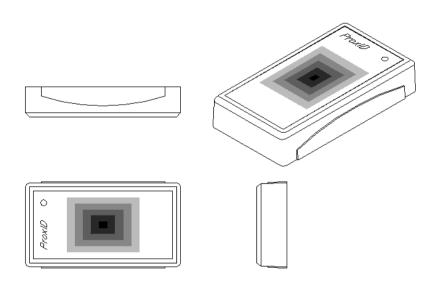
supply. A linear regulator is recommended.

Interface Wiegand, Magstripe, 9.6K Baud Serial ASCII (RS232)

or special to customer specifications.

Typical Maximum Read

in ideal conditions


Range 32cm at 13.5v and 20 cm at 5v with ISO card

Frequency 125KHz standard or 134.2KHz to special order.

Transponder Read Only.

Audio/Visual IndicationInternal LED and BuzzerDimensions10.3 x 6.3 x 2.0 cmTemperature Range-10 to 60 Deg C.

Interface Cable 90cm.

Output Assignment

Red Power 5-13.5 Volt Black Power 0 Volt

White Clock Output (Magstripe, Wiegand 1) 4K7 pull up

Green Data Output (RS232, Magstripe & Wiegand0) 4K7 pull up

Orange Card Present Output 4K7 pull up

Yellow Program Input 4K7 pull up

Blue External Beep. Positive Logic 5V on.

Brown LED (External source).

Output Format

The output format can be customer programmed. The available formats are Wiegand, Magnetic Emulation, Clock Data and Serial ASCII (RS232)

Wiegand			Magstr	ipe	
Red	Power +V		Red		Power +V
Black	Ground 0v		Black		Ground 0v
White	Data1		Green		Data
Green Data0		White		Clock	(Strobe)
Yellow conne	ect to White (Data0, Clock outp	ut)	Orange		Card Present
			Yellow		Connect to Orange

Serial ASCII (RS232)

Red Power +V
Black Ground 0v
Green Tx Data
Yellow No connection

Data Structure (Serial ASCII)

Baud Rate: 9600, N, 8,1

STX(02 HEX)	DATA	CR	LF	ETX (03 HEX)

The start character is factory defined as an 'STX' (02 HEX). The CR\LF characters serve to bring the received screen text back to the left hand side and on the line below after the data bytes have been sent. The 'ETX' (03 HEX) character denotes the end of the current transmission.

Data Structure (Mag-stripe emulation, ABA Track 2)

Speed: Simulated to 40 IPS (Inch per second)

10 LEADING ZEROS S	S	DATA	ES	LRC 10	TRAILING ZEROS

The leading zeros prepare the receiving unit to accept the data. SS is the Start Sentinel consisting of 11010. ES is the End Sentinel consisting of 11111. LRC is the Longitudinal Redundancy Check character. Lastly there follows trailing zeros.

PROGRAMMING THE OUTPUT FORMAT

The programming input may be connected in the following ways to choose between the available output formats.

1) Serial ASCII Leave Program Input Open Circuit
2) Wiegand Connect Program Input to Clock Output
3) Clock Data** Connect Program Input to Data Output
4) Magnetic Emulation Connect Program Input to Card Present

5) Customer Interface ** Connect to Zero Volts

ENVIRONEMENTAL ADJUSTMENT

If the reader is fixed onto a metal surface capacitors may be attached to the orange and yellow cable pair exiting the back of the reader to readjust the tuning.

^{**(}to special order only. Minimum 1k pieces)