
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
https://www.researchgate.net/publication/303816152

AUPS:	an	Open	Source	AUthenticated
Publish/Subscribe	system	for	the	Internet
of	Things

Article	·	June	2016

DOI:	10.1016/j.is.2016.05.004

CITATIONS

0

READS

102

4	authors,	including:

Alessandra	Rizzardi

Università	degli	Studi	dell'Insubria

13	PUBLICATIONS			72	CITATIONS			

SEE	PROFILE

Sabrina	Sicari

Università	degli	Studi	dell'Insubria

53	PUBLICATIONS			1,302	CITATIONS			

SEE	PROFILE

Alberto	Coen-Porisini

Università	degli	Studi	dell'Insubria

63	PUBLICATIONS			695	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Alessandra	Rizzardi

Retrieved	on:	07	October	2016

https://www.researchgate.net/publication/303816152_AUPS_an_Open_Source_AUthenticated_PublishSubscribe_system_for_the_Internet_of_Things?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/303816152_AUPS_an_Open_Source_AUthenticated_PublishSubscribe_system_for_the_Internet_of_Things?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Alessandra_Rizzardi?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alessandra_Rizzardi?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_degli_Studi_dellInsubria?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alessandra_Rizzardi?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Sabrina_Sicari?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Sabrina_Sicari?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_degli_Studi_dellInsubria?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Sabrina_Sicari?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Alberto_Coen-Porisini?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alberto_Coen-Porisini?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Universita_degli_Studi_dellInsubria?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alberto_Coen-Porisini?enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA%3D%3D&el=1_x_7


Contents lists available at ScienceDirect
Information Systems

Information Systems 62 (2016) 29–41
http://d
0306-43

n Corr
E-m

sabrina.
daniele.
alberto.
journal homepage: www.elsevier.com/locate/infosys
AUPS: An Open Source AUthenticated Publish/Subscribe
system for the Internet of Things

Alessandra Rizzardi a, Sabrina Sicari a,n, Daniele Miorandi b,
Alberto Coen-Porisini a

a Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell'Insubria, via Mazzini 5, 21100 Varese, Italy
b U-Hopper, via A. da Trento 8/2, 38122 Trento, Italy
a r t i c l e i n f o

Article history:
Received 26 May 2016
Accepted 27 May 2016

Recommended by: D. Shasha

secure communication mechanisms represent a key enabler for the wider adoption and
diffusion of IoT systems. One of the most widely employed protocols in IoT and machine-
Available online 4 June 2016

Keywords:
Internet of Things
Security
Publish & Subscribe
MQTT
Middleware
Prototype
x.doi.org/10.1016/j.is.2016.05.004
79/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: alessandra.rizzardi@uninsubria
sicari@uninsubria.it (S. Sicari),
miorandi@u-hopper.com (D. Miorandi),
coenporisini@uninsubria.it (A. Coen-Porisini)
a b s t r a c t

The arising of the Internet of Things (IoT) is enabling new service provisioning paradigms,
able to leverage heterogeneous devices and communication technologies. Efficient and

to-machine communications is the Message Queue Telemetry Transport (MQTT), a
lightweight publish/subscribe messaging protocol designed for working with constrained
devices. In MQTT messages are assigned to a specific topic to which users can subscribe.
MQTT presents limited security support. In this paper we present a secure publish/sub-
scribe system extending MQTT by means of a key management framework and a policy
enforcement one. In this way the flow of information in MQTT-powered IoT systems can
be flexibly controlled by means of flexible policies. The solution presented is released as
open source under Apache v.2 license.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Internet of Things (IoT) represents an emerging
paradigm for networking and service provisioning,
embracing heterogeneous devices (e.g., wireless sensor
networks, RFIDs, actuators) and communication technol-
ogies in order to acquire data from the physical realm and
process them in order to cooperatively provide useful
services for the interested users [1]. Examples of IoT sce-
narios include health equipments for patients monitoring,
connected cars in vehicular networks, surveillance devices,
wearable sensors, smart home systems, and so on. In such
.it (A. Rizzardi),

.

contexts, it is fundamental to define how the involved
“things” could efficiently communicate and exchange
information among themselves and with remote servers.
One key challenge relates to the amount of data generated,
which poses scalability issues. Furthermore, some of such
data may represent sensitive or personally identifiable
information. What emerges is that there are significant
issues to be addressed in order to efficiently and securely
manage IoT systems. Such problems are related to: (i) the
management of connections among the IoT system and the
data sources (e.g., the devices which acquire information
from the IoT environment), which could be affected by
resources constraints in terms of energy and storage
capacity (ii) the possibility, for the users, to control the
distribution of their sensitive information through IoT
connections as well as effective authentication and
authorization mechanisms both for users and devices in
order to prevent malicious access to resources [2].

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.05.004
http://dx.doi.org/10.1016/j.is.2016.05.004
http://dx.doi.org/10.1016/j.is.2016.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.05.004&domain=pdf
mailto:alessandra.rizzardi@uninsubria.it
mailto:sabrina.sicari@uninsubria.it
mailto:daniele.miorandi@u-hopper.com
mailto:alberto.coenporisini@uninsubria.it
http://dx.doi.org/10.1016/j.is.2016.05.004
https://www.researchgate.net/publication/270107935_Security_privacy_and_trust_in_Internet_of_Things_The_road_ahead?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–4130
As regard the first issue, several existing application-
level protocols for IoT and Machine-To-Machine (M2M)
[3,4] systems have been designed. Such protocols are typi-
cally conceived to introduce little overhead and to minimize
battery consumption, as well as to perform well in the
presence of many short messages. The most widely adopted
communication protocols for such fields are MQTT (Mes-
sage Queue Telemetry Transport) [5] and CoAP (Constrained
Application Protocol) [6], which are based on TCP and UDP,
respectively. In our work, we focus on MQTT due to its
maturity, stability and the fact that, after the recent adop-
tion by the OASIS Consortium as official standard,1 it is
likely to become the de facto standard for IoT.

MQTT is a lightweight event- and message-oriented
protocol, which allows the devices to asynchronously
communicate across constrained networks to reach remote
systems, as happens in a typical IoT/M2M scenario. MQTT is
based on a publish/subscribe interaction pattern. In parti-
cular, MQTT has been implemented for easily connecting
the “things” to the web and support unreliable networks
with small bandwidth and high latency. This protocol
employs a client–server pattern in which the server part is
represented by a central broker that acts as intermediary
among the clients (i.e., the entities that produce and con-
sume the messages). All the communications among server
and clients happen via a publish/subscribe mechanism,
based on the topic concept. A topic is a mean for repre-
senting the resources (i.e., the information) exchanged
within the system. Topics are used by clients for publishing
messages and for subscribing to the updates from other
clients. In Section 3 we analyze in depth MQTT features and
functionalities and our motivations to employ such a pro-
tocol in the proposed IoT architecture. In particular, the
actual version of MQTT (v 3.1.1) does not natively support
neither mutual authentication mechanisms nor techniques
able to guarantee the integrity and the confidentiality of the
transmitted information.

Regarding the second issue, adequate mechanisms
should be defined in order to control the flow of informa-
tion and to enforce proper policies implementing specific
rules for the management of resources and for handling
users preferences. Such mechanisms should be expressive
and flexible enough to support the wide range of technol-
ogies acting in IoT infrastructures and the various applica-
tion domains where users and devices could operate. The
aforementioned policies concern security requirements, in
order to deal with different violation attempts, but also data
quality aspects. More in detail, users should be aware of the
levels of security and data quality of the information they
receive by or transmit to the IoT system, in order to be able
to filter them on the basis of personal (or, alternatively,
application-dependent) preferences. As far as security levels
are concerned, we consider four specific requirements:
(i) data confidentiality; (ii) data integrity; (iii) privacy of the
data sources; (iv) robustness of the authentication/author-
ization mechanisms adopted by the data sources. Con-
cerning data quality requirements, we evaluate (i) data
1 https://www.oasis-open.org/committees/mqtt.
accuracy; (ii) data precision; (iii) information timeliness;
(iv) information completeness [7].

Summarizing, in this paper we propose a new secure
MQTT mechanism, named AUPS (AUthenticated Publish &
Subscribe), which has been integrated in a flexible and
cross-domain IoT architecture, starting from the Net-
worked Smart Objects (NOS) middleware defined in [7,8].
NOSs are able to distributedly manage heterogeneous
sources and evaluate the security and data quality of the
information, in order to satisfy users' requirements and
provide a lightweight and secure information exchange
process. In such a system, AUPS has been further inte-
grated with a policy enforcement mechanism, which
guarantees the authentication and authorization of data
sources via MQTT. AUPS is openly released under Apache
v.2 license.2

The paper is organized as follows. Section 2 reviews the
state of the art in terms of access control solutions and
policy enforcement mechanisms for distributed networked
systems. Section 3 describes the proposed IoT architecture,
along with the adopted MQTT protocol and the proposed
policy enforcement framework. Section 4 presents the
integration between MQTT protocol and the enforcement
mechanisms, in order to deal with security issues in the
investigated context; its robustness is evaluated against
possible violation attempts. Section 5 analyses a proto-
typical implementation of the proposed solution and
presents performance evaluation results. Finally, Section 6
concludes the paper and discusses directions for future
extensions and enhancements.
2. Related works

Before starting to design and develop our solution, a
deep analysis of the state of the art has been carried out,
with reference to both access control aspects in distributed
systems as well as to the existing enforcement mechan-
isms. We remark that policies are operating rules which
need to be enforced for the purpose of maintaining order,
security, and consistency on data. A policy enforcement
mechanism ensures that system operations can be per-
formed only if they comply with the underlying security
policies, typical operations be access (read or write) to
resources. While security is widely acknowledged to be
one of the major challenges for the wide adoption and
diffusion of IoT systems [2], scientific literature on the
topic is rather scarce.

For example, [9] focuses on the definition of a simulation
environment supporting various policy languages, such as
WS-Policy (Web Services-Policy) and XACML (eXtensible
Access Control Markup Language), adopted in different sys-
tems. The final goal is to allow cross-domain policy enforce-
ment. Note that, before applying policies across domain
boundaries, it is desirable to know which policies can be
supported by other domains, which are partially supported,
and which are not supported. For this purpose a semantic
model mapping and translation for policy enforcement across
2 https://bitbucket.org/alessandrarizzardi/nos.

https://www.oasis-open.org/committees/mqtt
https://bitbucket.org/alessandrarizzardi/nos
https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/270107935_Security_privacy_and_trust_in_Internet_of_Things_The_road_ahead?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–41 31
domain boundaries is defined by means of the Web Ontology
Language (OWL). A configurable middle-level component is
provided for the mapping process among different domains.
Our work does not only provide an uniform policy repre-
sentation suitable for different application domains, but also
integrate in a uniform platform the management of the
heterogeneous entities (i.e., technologies and devices)
involved in IoT, thus not limiting the target scenario to tra-
ditional infrastructures.

In [10] a novel access control framework, named Policy
Machine (PM), is proposed. It is composed by the following
basic entities: authorized users, objects, system opera-
tions, and processes. Objects specify system resources (e.g.,
records, files, e-mails) which are controlled under one or
more policies; operations identify the actions that can be
performed on the contents of objects (e.g., read, write,
delete); finally, users submit access requests through
processes. Policies are grouped in classes according to their
attributes and, therefore, an object may be protected
under more than one policy class, and, similarly, a user
may belong to more than one policy class. In such a way,
PM is a general purpose protection machine, since it is able
to configure many types of access control policies, and it is
independent from the different operating systems and
applications; users need to login only to PM in order to
interact with the secure framework. While relevant to our
work in terms of conceptual design, the PM represents just
an abstraction that cannot be implemented directly in a
working framework.

Hence, [11,12] introduce a semantic web framework
and a meta-control model to orchestrate policy reasoning
with identification and access control of information
sources. In fact, in open domains, enforcing context-
sensitive policies requires the ability to opportunistically
interleave policy reasoning with the dynamic identifica-
tion, selection, and access of relevant sources of contextual
information. Each entity (i.e., user, sensor, application or
organization) relies on one or more Policy Enforcing
Agents responsible for enforcing relevant policies in
response to incoming requests. The framework is applic-
able to a number of domains where policy reasoning
requires the automatic discovery and access of external
sources. The limit of such an approach is partially the same
of [10], even if an actual Java implementation exists, yet no
specific tailoring to an IoT context is present.

Expressing security policies to manage distributed
systems is a complex and error-prone task. Because of
their complexity and of the different degrees of trust
among devices in which code is deployed and executed, it
is challenging to make these systems secure. Moreover,
policies are hard to understand, often expressed with
unfriendly syntax, making it difficult for security admin-
istrators and for business analysts to create intelligible
specifications. In [13] a Hierarchical Policy Language for
Distributed Systems (HiPoLDS) is introduced. HiPoLDS
design focuses on decentralized execution environments
under the control of multiple stakeholders. It represents
policy enforcement through the use of distributed refer-
ence monitors, which control the flow of information
among services and have the duty to put into action the
directives generated by the decision engines. For example,
an enforcement engine should be able to add or remove
security metadata such as signatures or message authen-
tication codes, encrypt confidential information, or
decrypt it when required. Ref. [13] does not specify how
the distributed system behaves and manages policy
reconfigurations (e.g., if a reboot is required).

The authors of [14] consider that the application logic,
embodied in the system components, should be separated
from security execution policies. Therefore, they propose
an infrastructure which can enable policy, representing
high-level (i.e., user) or systems entities, able to drive the
system functionalities in a distributed environment. To
this end, a middleware is introduced, able to support a
secure and dynamic reconfiguration process, and to pro-
vide a policy enforcement mechanism across system
components. However, neither a case study nor a working
real implementation is provided, which would allow to
test its effectiveness and the performance in general.

The work in [15] describes a context-aware access
control architecture for the provision of e-services based
on an end-to-end web services infrastructure. The pro-
posed architecture is able to control access permissions to
distributed Web services through an intermediary server
in a completely transparent way both to clients and
resources. The access control mechanism is based on RBAC
(Role-Based Access Control) model, in order to enable the
enforcement of more complex rules and the inclusion of
context information in the authorization decisions. Con-
texts are classified on the basis of the requirements
imposed by the provision of e-services to the industrial
domain. In particular, the presented security enforcement
infrastructure implements the intermediary server by
means of six modules: Policy Enforcement Point (PEP),
Policy Decision Point (PDP), policy server, authentication,
authorization, and context modules. Such an architecture
is based entirely on open Web standards: HTTP, XML, SOAP
and WSDL. What is missing is again the effective port-
ability of such a mechanism in a more general IoT context,
taking into account the data sources management and the
users interactions with the system.

In [16] a category-based metamodel for access control
in distributed (federated) environments is presented. A
framework for the specification and the enforcement of
global access control policies that take into account the
local policies specified by each member of the federation is
described. Such a framework provides mechanisms for
specifying heterogeneous local access control policies, for
defining policy composition operators, and for using them
to define conflict-free access authorization decisions. In
this framework, distributed access control policies can be
easily specified and manipulated by means of local policy
specification mechanisms and definitions of policy com-
position operators. However, no real application case-
studies or implemented tools have been proposed by the
authors, thus limiting the contribution to a theoretical
approach.

In [17] an architecture for open networks is proposed,
aiming to allow “things”with limited or no user interfaces to
provide a high level of data security by delegating trust to a
trusted third party (i.e., a provisioning server). Such third
party helps the device to determine which users, devices or

https://www.researchgate.net/publication/220291177_A_meta-control_architecture_for_orchestrating_policy_enforcement_across_heterogeneous_information_sources?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/257547872_HiPoLDS_A_Hierarchical_Security_Policy_Language_for_Distributed_Systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/257547872_HiPoLDS_A_Hierarchical_Security_Policy_Language_for_Distributed_Systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220339065_The_Policy_Machine_A_novel_architecture_and_framework_for_access_control_policy_specification_and_enforcement?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220339065_The_Policy_Machine_A_novel_architecture_and_framework_for_access_control_policy_specification_and_enforcement?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/224630089_A_context-aware_access_control_framework_for_e-_Service_provision?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/266659421_Policy_enforcement_within_emerging_distributed_event-based_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–4132
services are authorized to perform a given operation on the
device itself in a secure manner. Such a solution uses an
existing, open and standardized transport protocol for com-
munication, named Extensible Messaging and Presence
Protocol (XMPP), for guaranteeing interoperability and scal-
ability. XMPP supports the most commonly communication
patterns necessary for Internet of Things, such as request/
response, asynchronous messaging and publish/subscribe. It
is based on message brokers to solve the security issues
concerning user identities, enforcing secure user authenti-
cation, and message authorization. The architecture aims for
zero-configuration for operators and manufacturers, without
compromising security or ease-of-use for end-users. The
architecture is also scalable and can be used both in local
environments such as cars, homes, offices, buildings, indus-
try plants, with local provisioning servers and local message
brokers, as well as in global environments, with global pro-
visioning servers connected to global message brokers. An
implementation of the provisioning server is also provided.
Note that the author has chosen to use XMPP protocol rather
than MQTT, as explained in [18]. However, the scalability
claimed by the authors is not clear, since most of the
operations are brought to external entities and devices seem
unaware about what they are or are not allowed to do.
Moreover, no performance analysis is provided to verify the
overhead on devices of such a solution.

A scheme for the asynchronous discovering of topics in
distributed publish/subscribe settings, based on Java
Message Service, WS-Eventing and WS-Notification infra-
structures, is presented in [19]. Every interaction within
the system is secured and requires the presence of cre-
dentials before any actions can take place. The created
topic advertisement is itself secured by encrypting the
advertisement with a symmetric key and by securing this
advertisement key with the creator's public key. In this
work, no platform is defined, able to assess the behavior of
Fig. 1. System ar
the presented mechanism in a wide IoT scenario, with a
proper threat model.

Ref. [20] aims to demonstrate that a standardized fed-
erated, dynamic, user-directed authentication and
authorization model can be adapted from the web to be
used in IoT, while preserving privacy for information and
devices. The authors explore the use of OAuth, built on top
of HTTPs, for IoT systems that instead use the lightweight
MQTT 3.1 protocol. In particular, they use OAuth 2.0 to
enable access control to information distributed via MQTT.
What emerges from this work is that some issues still
remain open, for example how to allow the re-use and the
integration of such a mechanism with the IoT devices and
the standard available protocols.

The enforcement solution presented in [21] is based on
a Model-based Security Toolkit named SecKit, which is
integrated with the MQTT protocol layer. In this work,
authorizations and obligations are identified and a specific
module (i.e., a Policy Enforcement Point) acts as a con-
nector to intercept the messages exchanged in the broker
with a publish/subscribe mechanism. Due to the similarity
of such an approach with our AUPS solution, in Section 4.1
we provide a comparison between the two solutions,
pointing out their crucial differences.
3. System architecture

Before presenting the proposed solution, the under-
lying IoT middleware, composed of multiple Networked
Smart Objects (NOSs) [7,8], is introduced. In Fig. 1 its high-
level layered structure is shown.

Starting from the bottom, the southbound interfaces of
a NOS use HTTP as network protocol to communicate with
IoT devices; such interfaces include the handling of the
data transmissions by different sources (i.e., the nodes) as
chitecture.

https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/264347555_Federated_Identity_and_Access_Management_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/241630514_Unify_to_bridge_gaps_Bringing_XMPP_into_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/4194211_On_the_creation_discovery_of_topics_in_distributed_publishsubscribe_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


Fig. 2. NOS data format.

A. Rizzardi et al. / Information Systems 62 (2016) 29–41 33
well as a service for source registration (each NOS deals
both with registered and non-registered sources). The
registration is not mandatory, but it provides various
advantages in terms of security, since registered sources
may specify an encryption scheme for their interactions
with NOSs, thus protecting their communications. The
information related to the registered sources are stored in
the Sources collection. For each incoming data, both from
registered and non-registered sources, the following
information is extracted: (i) the data source type, which
describes the kind of node (e.g., sensor node, actuator,
RFID, NFC, social networks); (ii) the communication mode,
that is, the way in which the data is collected (e.g., discrete
or streaming communication); (iii) the data schema, which
describes how the data content is structured and the for-
mat of the received data; (iv) the data itself; (v) the
timestamp at which the data arrived to NOS. Since the
received data are of different types and formats, NOS
initially caches them in the Raw Data storage unit and
periodically elaborates them according to the two-phase
structure shown in Fig. 1. This includes two steps (Data
Normalization and Analyzers), where results are put in a
uniform data representation. First, the message stored in
Raw Data is put in the format specified in Fig. 2 by the Data
Normalization module, which stores them in another sto-
rage unit, named Normalized Data. This represents a sort of
pre-processing phase in which the unnecessary informa-
tion is removed from the data (it depends on the specific
application domain); at this stage, security and qua-
lity metadata are still empty. Then, a second module,
consisting of a set of Analyzers, periodically extracts the
normalized data from the storage unit Normalized Data
and elaborates them (in terms of security and data quality
properties). Such an analysis implies that the data are
annotated with a set of metadata (i.e., a score in the range
½0;1� for each security and quality level). The rules, used for
the assessment of security and quality scores, are stored in
a proper format in another NOS storage unit, named
Config. Note that such rules are not covered in this work;
more details can be found in [8]. Config contains all the
configuration parameters required for the correct man-
agement of the IoT system (e.g., how to calculate quality
properties, which attacks or security countermeasures to
consider); it can also be re-configured at run-time by an
IoT system administrator through a secure connection
(e.g., HTTPS, SSL) without the need to re-start the NOS
application. The NOS Analyzers query the Config storage
unit in order to know which actions they have to under-
take on data. The semantic description of the data content
itself is represented in Fig. 2. The data thus processed are
used for providing services to the interested users (or
external applications) by means of a publish/subscribe
mechanism, as described in Section 3.2. Therefore, in order
to achieve such a goal, the NOSs layer should be connected
to IP-based networks (i.e., Internet, intranet). Note that
multiple NOSs may co-exist, each of them serving a subset
of the IoT devices present in the environment.

NOS northbound interfaces are instead based on the
MQTT protocol, described in detail in Sections 3.1 and 3.2.
Users and applications must previously register them-
selves to the IoT system; in such a phase, they are provided
with credentials useful for accessing the system by means
of a proper interface, as specified in Section 5. In particular,
the key used by the user/application for accessing the IoT
interface can be updated at any time, as happens in tra-
ditional authentication systems. Hence, the system allows
both the registration of users and of external applications,
which authenticate to NOS and then make requests to the
services made available by the NOS itself. In case of an
application registration, multiple users may register to
such an application, instead of registering to NOS.

3.1. MQTT protocol – introduction

MQTT is a lightweight broker-based messaging proto-
col, designed and developed for constrained devices and
bandwidth-limited communications by IBM/Eurotech in
1999 [5]. Such a publish–subscribe paradigm is developed
following an event-based architecture, in which publishers
publish structured events to an event service, usually
called broker, and subscribers show their interest in a
particular event through subscriptions. These subscrip-
tions can be custom patterns over the structured events.
Subscriptions notifications by publishers are sent to all the
interested subscribers, in order to prevent the publishers
needing to synchronize with subscribers.

https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–4134
Due to its simplicity and low overhead, MQTT is suitable
for resource-constrained environments and has found
application in several domains, including monitoring
applications, applications with live feeds of real-time data
(e.g., RSS feeds), dissemination of events related to adver-
tisements, support for cooperative working where users/
applications need to be informed about events of interest,
support for ubiquitous computing, etc. MQTT specifications
are open. Open source MQTT implementations are available
for all major IoT development platforms, for the two major
mobile platforms (i.e. Android and iOS), and for several
programming languages (Java, C, PHP, Python, Ruby, Java-
script). Moreover, the MQTT protocol has recently been
adopted as a standard by the Advancing open standard for
the information society (OASIS) consortium.

We remark that we chose MQTT since it represents the
de facto standard protocol used by a variety of IoT and
M2M systems. However, MQTT natively provides a very
simple security model. For authentication of clients by
server, the currently MQTT v.3.1.1 Protocol Specification
only allows the use of a username and, optionally, a
password. Developers can define customized authentica-
tion mechanisms using AES and DES as cryptographic
primitives. Nevertheless, this is not sufficient for guaran-
teeing a mutual authentication among clients and servers;
the integrity and the confidentiality of the transmitted
information is also left open. More in detail, for encryption
and transport-level security, the Transport Layer Security
(TLS) standard is recommended, although this is not
always a adequate choice for resource-constrained devices.
Some implementations also support the use of a Pre-
Shared Key (PSK) with TLS for authentication as well as
encryption. Such a solution is definitely not suitable for
highly dynamic IoT environments, since this strategy
would require frequent session re-negotiations to establish
new cryptographic parameters (i.e., change authentication
credentials) among NOS and the registered sources/users/
applications. Therefore, as described in Section 4, we
propose a more lightweight credential management solu-
tion, also concerning temporary keys with the aim to
improve the system's resilience to malicious attacks.

3.2. MQTT protocol – technical aspects

Some key features of MQTT are the followings:

� It provides one-to-many message distribution and
decoupling of information sources and consumers.

� It is agnostic about the content of the payload.
� It is built over TCP/IP protocols.
� It has a small transport overhead.

MQTT, as in general all the publish/subscribe models,
consists of a small set of operations, including the primi-
tives pointed out in Table 1. As just said, all these
operations are mediated by a broker, which is responsible
to dispatch the events from the publishers to the inter-
ested subscribers. Both centralized and distributed archi-
tecture implementations are available. Obviously, the sim-
plest approach is the centralized one: in this case, every
communication (i.e., from publishers to broker or from
broker to subscribers) takes place through a series of point
to point messages. However, the broker could become a
bottleneck. To prevent such a situation, the broker can be
replaced with a network of brokers that cooperate to offer
the services. In the solution proposed in this paper, we
consider for the sake of simplicity multiple NOSs con-
nected to one broker, albeit this can be easily replaced by a
plurality of brokers in larger scenarios.

As far as MQTT topics are concerned, they present the
following features:

� They are represented as UTF-8 strings used by the
broker to filter messages for each connected client.

� They consist of one or more topic levels separated by a
forward slash, forming a logical tree structure (e.g., a
topic for publishing the temperature information of a
sensor with identifier sensorId could be sensor/sensorId/
temperature).

� They are used by clients for publishing messages and for
subscribing to the updates from other clients, thus
avoiding a continuous polling between producers and
consumers.

� It is possible to subscribe to an exact topic or to multiple
topics at once by using the wildcards, which are
represented by the following symbols:

_ þ , for a single-level wildcard (i.e., exactly one topic
level).

_ #, for a multi-level wildcard (i.e., an arbitrary num-
ber of topic levels).
Table 2 shows the MQTT message format, consisting of
three parts: a fixed and a variable header, and a payload.
For further details we refer to [22].

Concerning reliability, MQTT is based on TCP, so it
provides standard TCP delivery reliability. Furthermore,
three levels of application-level QoS are supported, as
summarized in Table 3.

MQTT also supports persistence of messages to be
delivered to future clients that subscribe to a topic, and
may be configured to send messages of specific topics
when the subscriber connection is abruptly closed. Such a
kind of configuration is established by the IoT system
administrator on the basis of the IoT application require-
ments, and, regarding the NOS architecture, it is specified
in the Config storage unit.

Regarding NOSs, they have a module in charge of
assigning the corresponding topics to data and then pub-
lishing them to a MQTT client (module Publish Data in
Topics in Fig. 1). A MQTT client, as that contained in each
NOS, exchanges messages with a MQTT broker by means
of publish and subscribe operations. The MQTT client
running in a NOS system (Client MQTT in Fig. 1) publishes
messages under the specific topics. The assignment of the
topics depends on the application domain and is out of the
scope of this work, but it is important to remark that the
assignment should be linked to the definition of an
ontology able to represent the semantics of the managed
resources. Note that subscribers may register for specific
topics at runtime and NOSs provide a mechanism for
dynamic subscription e unsubscription to the topics.



Table 1
MQTT operations set.

Primitive Description

publish Used by a publisher to disseminate an event
notify Used by a subscriber to receive an event notification (a

topic update)
subscribe Used by a client to subscribe to a specific topic
unsubscribe Used by a client to unsubscribe from a specific topic

Table 2
MQTT message format.

Component Information

fixed header Message type, Quality of Service (QoS) level, some
flags, message length

variable header It depends on the application domain (information
type)

payload The data value referred to the topic

Table 3
MQTT QoS.

Component Information

at most once Messages are delivered according to the best effort of
TCP/IP networks, so message loss and duplication can
occur

at least once Messages are assured to arrive, but duplicates may
occur

exactly once Messages are assured to arrive exactly one time

A. Rizzardi et al. / Information Systems 62 (2016) 29–41 35
3.3. Enforcement framework

NOS is integrated with a policy enforcement frame-
work, as sketched in Fig. 1; here it is represented around
the core of NOS functionalities, since it has to manage the
access to the resources against violation attempts. The
enforcement components include [23] a Policy Enforce-
ment Point (PEP), which is the point that intercepts the
requests of access to resources from users/devices, and
makes the decision requests to PDP in order to obtain the
access decision (i.e., approved or rejected); a Policy Deci-
sion Point (PDP), which evaluates the access requests
against the authorization policies before taking the
authorization decisions; a Policy Administration Point
(PAP), which contains the authorization policies estab-
lished by the system administrators. In this paper, the
focus is on the policies related to the access to resources
and, in particular, to those concerning the publishing of
the information and their notification to the subscribers,
which are detailed in Section 4; however, the system may
include also other kinds of policy, beyond the MQTT scope
(e.g., regarding the data processing).

The access control model considered in this paper is the
Attribute Based Access Control (ABAC) [24]. In such a
mechanism, both the subjects, who want to access or to
provide the resources, and the objects (i.e., data), which
represent the resources themselves, are described by
means of specific attributes, which are used for the policies
definition. Attributes can be based on the metadata fields
natively supported in our data representation and control
rules can be defined according to the specific needs of the
application domain. This feature is fundamental for guar-
anteeing the proper flexibility to ensure applicability to
heterogeneous IoT environment.

Although so far we referred to only one NOS, the IoT
system can comprise one or more NOS and a huge amount
of nodes (acting as data producers), and users/applications
(acting as data consumers). Each NOS is provided with a
set of policies, therefore, their distribution, update and
synchronization have to be considered. These operations
are carried out through the Config storage unit, which is in
charge of update the PAP. In case of multiple NOSs inter-
acting with each other, all NOSs share the same security
policies, in case of the same IoT context, and each of them
has its own policy enforcement component. An important
feature of the proposed policy environment is that it
supports the loading of new policies at runtime, without
the need of off-line updates, since the enforcement fra-
mework is kept decoupled from other management com-
ponents belonging to the core NOS functionalities.
4. MQTT policy enforcement

In order to provide a secure system able to enforce the
policies defined in a specific application domain, it is
fundamental to integrate a secure MQTT protocol and an
enforcement framework within the overall NOS archi-
tecture. This is what we term AUPS (AUthenticated Pub-
lish/Subscribe system for the Internet of Things).

As described in Section 3, each NOS has southbound
interfaces towards the data sources and northbound
interfaces towards the users/applications. Concerning the
southbound interfaces (based on HTTP protocol), the fol-
lowing endpoints are provided:

� POST/data: Used for handling transmission of data from
the nodes to NOSs. The data format is just required to be
a valid JSON node and is completely domain-dependent.

� POST/registration: Used by nodes for registering to NOS.
The body of request is required to be a valid JSON node.
The following fields are mandatory: NodeId, Node-

Type, CommunicationMode. Optional field: Encryp-
tionScheme. The response includes node credentials in
the case of a valid registration request.

NOSs deal both with registered and non-registered
sources, so data from unknown nodes are also accepted;
moreover, HTTP offers in-built authorization and authen-
tication functionalities, thus generating no noticeable
security issues.

The problems arise with the northbound interfaces,
which are based on MQTT protocol. An application/user
wanting to use data from NOS can access it through sub-
scription to the relevant topic(s), handled by the MQTT
broker. Yet, the resources are accessible on the basis of the
policies defined within the NOS enforcement framework.
Therefore, the MQTT broker has to interact with the
underlying PEP on NOS in order to accept or deny sub-
scription requests.

https://www.researchgate.net/publication/251604664_Decision-cache_based_XACML_authorisation_and_anonymisation_for_XML_documents?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/221609655_Attribute-based_encryption_for_fine-grained_access_control_of_encrypted_data?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


Fig. 3. High-level information flow.

Fig. 4. PUB transaction.

3 This clearly requires synchronization among hosts.

A. Rizzardi et al. / Information Systems 62 (2016) 29–4136
In such a context, our AUPS solution aims to propose a
new system for the enforcement management of users/
applications authentication and authorization policies
through integration with the MQTT mechanisms. The
involved entities and the flow of information are shown in
Fig. 3. Four relevant actors are present in the system:

� The data source, which communicates data to NOS using
the HTTP protocol.

� The NOS, which processes the data according to the
procedures described in Section 3 and publishes them
under the relevant topic(s) to the MQTT broker.

� The MQTT broker, which notifies the interested sub-
scribers of the new incoming data.

� The user (or, equivalently, service), which accesses IoT-
generated data through subscriptions to the MQTT
broker.

In particular, two transactions, strictly related to MQTT,
have to be handled, for simplicity named PUB and REC:
PUB represents the publication of new data to a topic by
NOS; while REC represents the notification and reception
of new published data to the subscribers. Before detailing
such operations, the Keys Topics Manager (KTM) has to
be introduced. It is added as an external NOS compo-
nent, which is able to interact with NOS by means of a
secure HTTPS/SSL connection, in the same way as for the
configurations contained in Config collection (i.e., managed
by an external administrator). KTM is in charge of
managing temporary keys for topics access control. In
particular, it handles a table structure with the following
fields:

� keyId: the identifier of the corresponding key.
� keyT: the actual key.
� val: the expiration date of the key.3

� atb: the attribute(s) owned by the users/applications
allowed to access the resource. The key is associated to the
correct users/applications on the basis of the attributes by
the corresponding policies, expressed in PAP component
and defined by system administrator. In this way, the KTM
is decoupled from the enforcement framework.

We remark that the keys are not fixed, but they come
with an expiration date, which is expressed in the field val.
Moreover, the expiration times can be out-of-phase from
each others, thus without affecting the system load. Since, as
explained in Section 3.3, the policies are global for all the
NOSs belonging to an IoT system, also the keys topics man-
agement has to be global due to the attributes configura-
tions. In this way, we also guarantee the NOSs synchroniza-
tion in terms of active policies. Moreover, as just introduced
in Section 3.3, the access control is based on ABAC; in fact,
each user/application has to pass a registration phase before
interacting with the IoT system, in which a set of attributes is
assigned on the basis of the specific application domain (e.g.,
a manager and an employee of a financial company should
have different attributes for accessing the resources of the
company itself).

As regard the operations, PUB transaction is composed
by the following steps, also represented in Fig. 4. Note that,
for the sake of simplicity, in rest of the section we refer to



4 Note that if the PEP has not a valid key for the data belonging to
topic t, it has to ask them to KTM, as described for PUB transaction.
Moreover, the fields keyT, keyId and val are not sent in clear by NOS to u,
but they are also encrypted with the key of the device u itself, established
during the initial registration phase.

A. Rizzardi et al. / Information Systems 62 (2016) 29–41 37
NOS meaning NOS Core functionalities, as shown in Fig. 4.
This is due to the fact that the enforcement framework
belongs to the NOS as a running module, but, at the same
time, it is queried by proper NOS core functionalities when
needed.

1. NOS produces a new data item d, which has passed both
the normalization and the analyzers phases (Section 3).

2. The data d is assigned to a specific topic t.
3. NOS queries the PEP in order to obtain the information

useful for protecting the access to the resource repre-
sented by the data d relative to the topic t.

4. PEP queries the PDP in order to know which attributes
atb a user/application has to own in order to access the
resources represented by the topic t. PDP returns to PEP
the information related to the attributes atb in accor-
dance with the policies specified by PAP. Then, PEP can
perform two actions:

(a) If it owns a valid key for the access of users/applica-
tions with attributes atb to data published under
topic t, then it sends keyT, along with the corre-
sponding keyId and val to the NOS.

(b) If it does not own a valid key for the access of users/
applications with attributes atb to data published
under topic t, it asks a new valid key to the KTM
before sending to the NOS keyT, keyId and val.
Note that, once a PEP of a NOS has asked a new valid
key, it caches it locally. When PEP finds out that a key
is not valid any longer, then a request to get a new
one is triggered.

5. NOS encrypts the data d with the obtained keyT, thus
obtaining the encrypted data denc:

denc ¼ encðd; keyT ; keyIdÞ; ð1Þ
where any existing encryption mechanism encð�Þ can
be used.

6. NOS prepares the message to send for being published
in the format specified by the following JSON syntax:

f
“keyId~: keyId;
“data~: denc

g

ð2Þ

7. The NOS MQTT client sends such information to the
MQTT broker to be published under the specific topic t
and to notify the interested subscribers.

After the PUB transaction, the REC transaction takes
place, since the data d has been published, in an encrypted
way (i.e., denc), under the proper topic t. As a consequence,
all the subscribers interested in the topic t have been
notified about the new published data. Supposing that a
user device u receives a new notification (the case of
application is omitted, but analogous), the steps to be
performed are the following ones, as also represented in
Fig. 5:

1. The user device u can do two actions:
(a) If it already owns a valid key for the access to the
resources specified by the topic t, then it can go to the
final step.

(b) If it does not own a valid key for the access to the
resources specified by the topic t:

(i) u issues a request to NOS to access the information
needed for decrypting the data denc.

(ii) NOS queries the PEP, which in turn queries the PDP,
in order to establish if the requesting user u with its
attributed atb, is allowed to access to the resources of
topic t; the response depends on the policies acti-
vated within PAP (and established on the basis of the
attributes owned by the user as established during
the preliminary registration phase).

(iii) Then:
(A) If the response of the PEP is positive, then the PEP

sends to NOS the information related to the key keyT,
the identifier keyId and the validity val, which are
then sent to u, encrypted with the key obtained by
the user during the preliminary registration phase.

(B) If the response is negative, an error message is sent
by PEP to NOS and, then, by NOS to u.4

2. Once in possession of the key keyT and the identifier
keyId, the user (or: service) u is able to decrypt the data
denc. We remark that a user does not have to require the
key at each notification, since the key has a validity
indicated by the timestamp val.

Summarizing, the adopted approach is able to effec-
tively decouple aspects related to security features from
the usage of the MQTT pub/sub protocol; at the same time,
network and computing resources are used effectively.
Furthermore, the use of temporary keys and of user/
application registration improves the system's resilience to
malicious attacks (e.g., man in the middle attacks, replay
attacks, password discovery).

4.1. Robustness evaluation

In order to further clarify the innovative contribution of
the presented AUPS solution, we compare it with another
existing approach integrated in SecKit [21] and briefly
described in Section 2. SecKit also aims to address the lack
of security policy enforcement capabilities in existing MQTT
implementations, but it follows a different approach.

SecKit extends the implementation of the open source
Mosquitto MQTT broker with a security plugin, in a way
that the PEP directly resides on the broker. Instead, in
AUPS, PEP and the other enforcement components reside
on each NOS. Note that NOSs represent a real IoT mid-
dleware with data processing and source management
capabilities (as described in Section 3); while in [21] the
deployment of a large scale IoT middleware is left out of
the scope. Hence, [21] limits the presentation of the results
to a restricted scenario, in which all the load of policy

https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


Fig. 5. REC transaction.

6 https://bitbucket.org/alessandrarizzardi/nos.

A. Rizzardi et al. / Information Systems 62 (2016) 29–4138
enforcement is moved on the MQTT broker, thus increas-
ing its computational overhead. The major implication of
porting PEP on the broker, as SecKit does, is that the native
lightweight efficiency of Mosquitto in terms of processing
and memory capabilities may be compromised, in parti-
cular in a large-scale application setting, with huge
amount of topics and adopted policies. For this reason, we
decided to keep the security enforcement management on
NOSs, which have more processing and storage resources.
Moreover, the usage of a uniform language for imple-
menting PEP and PDP (in our case: javascript, using the
Node.JS platform5) ensures easier integration and main-
tenance than the mixed approach (PEP in C and PDP in
Java) used in SecKit. Furthermore, if PEP resides on the
MQTT broker, then the violation of the broker itself by
malicious entities may compromise the whole network,
breaking access decision allowing non-authorized users/
applications to access restricted information. Otherwise, in
AUPS, NOS itself would be violated, which is a more
complex task and, in addition, the key management is
controlled by another external entity, the KTM, which is
decoupled with respect to NOSs, thus increasing the
robustness of the entire system.

A further crucial difference between AUPS and SecKit is
that our access control acts at the topic level, while, in [21],
the authors propose to consider the delivery of individual
messages and filter the access on the basis of the content of
the payload. To do this, SecKit has to include in the model
the concepts of context and situation, by means of which
PDP is able to assign different policies to the same infor-
mation depending on the actual conditions. As a con-
sequence, authorizations and obligations are specified using
an Event-Condition-Action (ECA) structure and, at any time,
before allowing the access to a resource, the system has to
evaluate the actual events, which take part within the sys-
tem. In our opinion, such an approach may seriously affect
5 http://nodejs.org/.
the system performance; in fact, not only an ECA hierarchy
has to be defined for each new resource, but also the related
events, to be executed in response to particular scenarios,
need to be specified, thus requiring a considerable compu-
tational effort. Therefore, we decided to perform access
control at a coarser level of granularity, using ABAC (instead
of ECA) and without requiring the access control operations
at each notification event by introducing the concept of
temporary keys, thus reducing the computational and sto-
rage overhead. Another advantage of the adoption of KTM
and temporary keys on NOSs is represented by robustness
against violation attempts. In fact, our mechanism allows us
to preserve the system from credential discovery and replay
attacks, since the keys, used for decrypting the information,
have a limited temporal scope. Also as regard man in the
middle attacks, even if a malicious entity listens to the
communications between broker and user devices (or
external application), it will not be able to intercept the clear
content, since the encryption varies over time, without a
fixed or predictable pattern. Furthermore, if a malicious
device obtains one or more keyT, then it may perform a
Denial of Service (DoS) attack; also this action is mitigated
since, in AUPS, when the key will expire, the device will not
own the correct credentials for authenticating itself to NOS,
therefore it will not obtain any new valid key and it will not
continue to execute the attack. Is is important to remark
that SecKit only refers to DoS, which is recognized by
monitoring the flood of message, but no other kind of
attacks is handled; moreover, as regard DoS attack, no
possible countermeasures are specified by the authors in
order to face such violations.
5. Evaluation scenario

The AUPS solution presented in the previous section
has been implemented and the code is freely released
under an Apache v.2 license.6 The implementation was
carried out using the following components/technologies/
libraries: (i) NOS is developed over a Node.JS platform,7

(ii) MongoDB8 is used for database management; (iii) the
Mosquitto9 MQTT broker is used for the publish/subscribe
mechanism. All the modules, including the enforcement
framework, interact among themselves through RESTful
services. In this way it is possible to add new modules or
duplicate the existing ones, since they are able to work in a
parallel (non-blocking) manner or to define new func-
tionalities or removing the active ones. Moreover, Mon-
goDB, as a non-relational database (i.e., NoSQL), allows the
data model to evolve dynamically. Indeed, the data are
handled in JSON format, which is also a lightweight data-
interchange format.

In our experimental setup, a NOS runs on a Raspberry
Pi, which, in our test environment, receives real-time data
feeds from six sensors located in the meteorological sta-
tion of the city of Campodenno (Trentino, Italy). Data are
7 http://nodejs.org/.
8 http://www.mongodb.org/.
9 http://mosquitto.org.

http://nodejs.org/
<ce:monospace>https://bitbucket.org/alessandrarizzardi/nos</ce:monospace>
http://nodejs.org/
http://www.mongodb.org/
http://mosquitto.org
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–41 39
formatted in JSON, and include information on tempera-
ture, humidity, wind, energy consumption and air quality.
In the following example, NOS fetches the data at two
different rate: 10 packets per second and 20 packets
per second. This frequency obviously influences the
memory occupancy as well as the computational effort.
Others parameters which may affect the performance of
the whole system are represented by the number of
sources and of interacting users. As just said, we consider
six data sources, whereas the number of users is fixed to
two. With the term “fixed”, we mean that, in a real
application scenario, users may join (i.e., by means of NOS
registration) or leave the IoT network at any time. In the
remainder of this section, we present the results, in terms
of performance, achieved experimentally by our imple-
mentation.

5.1. Overhead analysis

The overhead in terms of storage capacity and com-
putational effort has been analyzed. In our test-bed, NOS
runs on a Raspberry Pi with 512 MB of RAM and a variable
physical memory, which depends on the capacity of the
adopted microSD; in the present scenario, the microSD has
8 GB of memory. An important premise is that NOS does
not support persistent storage of IoT-generated data. In
fact, data are only temporarily cached on the NOS while
being processed before being submitted to the MQTT
broker. Once data are pushed to or pulled from the server
which handles the topics notification to subscribers, data
can be safely flushed from the NOS itself. In our proto-
typical implementation, the in-memory capability of
MongoDB has been used for Raw Data and Normalized Data
collections, while Config and Sources databases are per-
sistently stored on the local hard disk. Hence, the memory
occupancy resulted on average slightly less than
7.5 megabyte, where the 8% is used for AUPS. More in
detail, NOS has always to maintain the set of tuples T in the
form keyId, keyT, val, atb for each combination of attributes
associated to the topics and established by the policies
themselves. In our example, the considered topics are six
(i.e., one for each kind of data provided by the sources). At
this stage, the number of possible combination for the
access to resources depends on the granularity of the
policies required by the system administrator. In fact, the
system administrator may decide to associate a different
attribute for accessing each topic or, instead, group them,
so that access is allowed to a subset of the data. Note that
we adopt ABAC, as explained in Section 3.3.

Two users are considered for our validation: the former
with access to topics 1 campodenno/sensor1/temperature and
2 campodenno/sensor2/humidity; the latter with only access
to topic 2. Such policies may be replicated for each of the six
kinds of data provided by the sources. As a consequence, the
amount of memory required on NOS is strictly related to the
structure and granularity of access permissions and, more in
general, to the specific application domain. In the presented
case study, the physical memory needed is very low (the 8%
of the memory occupancy, as just said), since few kinds of
information are provided to the system by the meteor-
ological sensors. Moreover, note that the dimension of each
tuple T varies on the basis of the length of the fields keyT and
atb. Hence, the application of the proposed approach in a
wide real scenario has to take into account such aspects
related to memory occupancy in the definition of attributes
and access permissions.

Instead, as regard the computational overhead with
respect to the original NOS MQTT version, we consider
that, for each incoming data, the following operations are
executed (in brackets, the measured average execution
time):

� Three database queries for obtaining the access per-
missions to be associated to the new data (2.4 ms).

� One operation of encryption (0.5 ms).
� One HTTP call to the KTM, only in case of expired key

(3.2 ms).

While, when a new data is notified to a user, then it is the
user device which is in charge of executing the operation
of decryption; NOS is asked a new valid key only in case of
an expired one on the user device. Such an activity
requires:

� Three database queries for obtaining the access per-
missions to be associated to the user (2.4 ms).

� One HTTP call to the KTM (3.2 ms).

Finally, an important remark has to be done about the
KTM. In fact, being an external entity, KTM does not
delegate the keys and attributes management to NOS, thus
saving memory and processing capacity. Moreover, KTM
cannot be considered a bottleneck, besides it serves all
NOSs, since its operations (i.e., the temporary keys gen-
eration) are asynchronous with respect to NOSs activity. In
fact, we suppose that the key expiration time is not the
same for all the generated keys, thus allowing a balanced
load of HTTP calls made by NOSs to the KTM during the
system running. Obviously, a large-scale evaluation should
be done in order to better assess the KTM performance.

5.2. Latency

The next performance analysis of AUPS investigates the
end-to-end latency introduced by the adoption of the
proposed secure mechanism to the native MQTT transac-
tions, executed in the previous version of NOS [7] (i.e.,
with the secure extension disabled). Latency is computed
as the distribution of the elapsed time from the data
reception to NOS until it is sent to the broker. Latency is
computed for two different settings, with and without
AUPS. For AUPS, the key expiration timeout was set to
5 min. Fig. 6 shows the distribution of the latency for one
NOS and the six data sources, measured over a period of
24 h and with two different data fetch rate: 10 packets
per second and 20 packets per second. In the original
configuration, i.e., without AUPS, the average measured
latency is approximately 3.5 ms and 4 ms for 10 and 20
packets per second, respectively. Instead, once enabling
the secure extension, such an average time increases by
2 ms. What emerges is that the new operations add a



Fig. 6. Latency: whiskers-box diagram for a system with and without
AUPS with two different data fetch rate (10 and 20 pkt/s).

Fig. 7. CPU load.

A. Rizzardi et al. / Information Systems 62 (2016) 29–4140
stable increase of the delay, which remains under an
acceptable threshold.

5.3. Computing

Taking in mind the same parameters used for the
latency performance evaluation, Fig. 7 shows the dis-
tribution of the CPU load on the NOS with and without
AUPS. Also in this case the computational efforts is stable
during system running and results are very promising for
encouraging the adoption of AUPS solution in a large-scale
environment. It is important to note that both latency and
computing performances are affected by the number of
users, subscribed to the topics provided by NOS. In fact,
such parameters influence the number of keys to be gen-
erated and, therefore, the overall resources required
by AUPS.

Furthermore, we remark that this represents only an
example of a very simple NOS application in a context
characterised by the analysis of real-time data. One aspect
which deserves some further clarifications refers to the
fact that in our example we considered one single NOS.
While indeed we aim to deploy the presented middleware
in a distributed environment, from an analysis of NOS
functionality it is not difficult to see that no NOS-to-NOS
coordination is strictly required. In fact, NOSs are able to
(i) independently handle the data sources, without the
need to inform the other NOSs of their active and past
interactions; (ii) be independently re-configured by IoT
system administrators; (iii) independently assign topics
and publish data on the basis of the defined rules; (iv)
enforce the application of the policies defined for the IoT
system. Therefore, we can safely conclude that considering
a single NOS-scenario for validation purposes does not
represent a limiting factor.
6. Conclusions

The lack of a comprehensive security solution repre-
sents a major threat to the growth and market take-up of
Internet-of-Things systems across a variety of vertical
application domains. MQTT is emerging as a de facto
standard messaging protocols for IoT applications, yet in its
current version it provides little security support. In this
work we presented AUPS, a system and methods for
adding security to MQTT-based IoT systems. AUPS includes
a policy enforcement framework, coupled with a key
management one, and is able to effectively manage pub-
lications and subscriptions through MQTT interactions.
The proposed solution has been implemented and a
working implementation is released, under an open source
license, to the research community at large. Future
extensions include testing in a larger, more complex set-
ting, possibly characterised by the presence of a plurality
of networked brokers and NOSs, where issues related to
synchronization of policies among hosts may arise.
References

[1] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac, Internet of Things:
vision, applications and research challenges, Ad Hoc Netw. 10 (7)
(2012) 1497–1516.

[2] S. Sicari, A. Rizzardi, L.A. Grieco, A. Coen-Porisini, Security, privacy
and trust in Internet of Things: the road ahead, Comput. Netw. 76
(2015) 146–164.

[3] D. Boswarthick, O. Elloumi, O. Hersent, M2M Communications: A
Systems Approach, 1st ed. Wiley Publishing, USA, 2012.

[4] L.A. Grieco, M.B. Alaya, T. Monteil, K.K. Drira, Architecting informa-
tion centric ETSI-M2M systems, IEEE PerCom (2014).

[5] IBM and Eurotech “MQTT v3.1 Protocol Specification”, 〈http://public.
dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html〉.

[6] S. Raza, H. Shafagh, K. Hewage, R. Hummen, T. Voigt, Lithe: light-
weight secure CoAP for the Internet of Things, IEEE Sensors J. 13 (10)
(2013) 3711–3720.

[7] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, A. Coen-Porisini,
Networked smart objects: Moving data processing closer to the

http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref1
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref1
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref1
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref1
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref2
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref2
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref2
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref2
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref3
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref3
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref4
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref4
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref6
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref6
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref6
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref6
https://www.researchgate.net/publication/270107935_Security_privacy_and_trust_in_Internet_of_Things_The_road_ahead?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/270107935_Security_privacy_and_trust_in_Internet_of_Things_The_road_ahead?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/270107935_Security_privacy_and_trust_in_Internet_of_Things_The_road_ahead?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/255982704_Lithe_Lightweight_Secure_CoAP_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/255982704_Lithe_Lightweight_Secure_CoAP_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/255982704_Lithe_Lightweight_Secure_CoAP_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/260604806_Architecting_information_centric_ETSI-M2M_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/260604806_Architecting_information_centric_ETSI-M2M_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==


A. Rizzardi et al. / Information Systems 62 (2016) 29–41 41
source, in 2nd EAI International Conference on IoT as a Service,
October 2015.

[8] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, A. Coen-Porisini, A
secure and quality-aware prototypical architecture for the Internet
of Things, Inf. Syst. 58 (2016) 43–55.

[9] Z. Wu, L. Wang, An innovative simulation environment for cross-
domain policy enforcement, Simul. Model. Pract. Theory 19 (August
(7)) (2011) 1558–1583.

[10] D. Ferraiolo, V. Atluri, S. Gavrila, The policy machine: a novel
architecture and framework for access control policy specification
and enforcement, J. Syst. Archit. 57(April (4)) (2011) 412–424.

[11] J. Rao, A. Sardinha, N. Sadeh, A meta-control architecture for
orchestrating policy enforcement across heterogeneous information
sources, Web Semantics: science, Services Agents World Wide Web
7 (1) (2009) 40–56.

[12] J. Rao, A. Sardinha, N. Sadeh, A meta-control architecture for
orchestrating policy enforcement across heterogeneous information
sources, Web Semantics: science, Services Agents World Wide Web
7 (January (1)) (2009) 40–56.

[13] M. Dell'Amico, M.S.I.G. Serme, A.S. de Oliveira, Y. Roudier, Hipolds: a
hierarchical security policy language for distributed systems, Inf.
Secur. Techn. Rep. 17 (February (3)) (2013) 81–92.

[14] J. Singh, J. Bacon, D. Eyers, Policy enforcement within emerging
distributed, event-based systems, in: DEBS 2014—Proceedings of the
8th ACM International Conference on Distributed Event-Based Sys-
tems, 2014, pp. 246–255.

[15] V. Kapsalis, D. Karelis, L. Hadellis, G. Papadopoulos, A context-aware
access control framework for e-service provision, in: IEEE International
Conference on Industrial Technology, 2005. ICIT 2005, December 2005,
pp. 932–937.
[16] C. Bertolissi, M. Fernández, A metamodel of access control for dis-
tributed environments: applications and properties, Inf. Comput.
238 (2014) 187–207.

[17] P. Waher, Security in Internet of Things using delegation of trust to a
provisioning server, 2014.

[18] M. Kirsche, R. Klauck, Unify to bridge gaps: Bringing XMPP into the
Internet of Things, in: 2012 IEEE International Conference on Per-
vasive Computing and Communications Workshops (PERCOM
Workshops), IEEE, USA, 2012, pp. 455–458.

[19] S. Pallickara, G. Fox, H. Gadgil, On the creation & discovery of topics
in distributed publish/subscribe systems, in: The 6th IEEE/ACM
International Workshop on Grid Computing, 2005, IEEE, USA, 2005,
p. 8.

[20] P. Fremantle, B. Aziz, J. Kopecky, P. Scott, Federated identity and
access management for the Internet of Things, in: 2014 International
Workshop on Secure Internet of Things (SIoT), IEEE, USA, 2014,
pp. 10–17.

[21] R. Neisse, G. Steri, G. Baldini, Enforcement of security policy rules for
the Internet of Things, in: 2014 IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), October 2014, pp. 165–172.

[22] A. Banks, R. Gupta, qtt version 3.1. 1, OASIS Standard, 2014.
[23] N. Ulltveit-Moe, V. Oleshchuk, Decision-cache based XACML

authorisation and anonymisation for XML documents, Comput.
Stand. Interfaces 34 (6) (2012) 527–534.

[24] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption
for fine-grained access control of encrypted data, in: Proceedings of
the 13th ACM Conference on Computer and Communications
Security, 2006, pp. 89–98.

http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref8
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref8
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref8
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref8
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref9
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref9
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref9
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref9
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref11
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref11
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref11
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref11
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref11
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref12
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref12
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref12
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref12
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref12
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref13
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref13
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref13
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref13
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref16
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref16
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref16
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref16
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref23
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref23
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref23
http://refhub.elsevier.com/S0306-4379(16)30237-X/sbref23
https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/295397698_A_secure_and_quality-aware_prototypical_architecture_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220291177_A_meta-control_architecture_for_orchestrating_policy_enforcement_across_heterogeneous_information_sources?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220291177_A_meta-control_architecture_for_orchestrating_policy_enforcement_across_heterogeneous_information_sources?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220291177_A_meta-control_architecture_for_orchestrating_policy_enforcement_across_heterogeneous_information_sources?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220291177_A_meta-control_architecture_for_orchestrating_policy_enforcement_across_heterogeneous_information_sources?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/257547872_HiPoLDS_A_Hierarchical_Security_Policy_Language_for_Distributed_Systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/257547872_HiPoLDS_A_Hierarchical_Security_Policy_Language_for_Distributed_Systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/257547872_HiPoLDS_A_Hierarchical_Security_Policy_Language_for_Distributed_Systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/264347555_Federated_Identity_and_Access_Management_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/264347555_Federated_Identity_and_Access_Management_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/264347555_Federated_Identity_and_Access_Management_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/264347555_Federated_Identity_and_Access_Management_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/251604664_Decision-cache_based_XACML_authorisation_and_anonymisation_for_XML_documents?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/251604664_Decision-cache_based_XACML_authorisation_and_anonymisation_for_XML_documents?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/251604664_Decision-cache_based_XACML_authorisation_and_anonymisation_for_XML_documents?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220339065_The_Policy_Machine_A_novel_architecture_and_framework_for_access_control_policy_specification_and_enforcement?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220339065_The_Policy_Machine_A_novel_architecture_and_framework_for_access_control_policy_specification_and_enforcement?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/220339065_The_Policy_Machine_A_novel_architecture_and_framework_for_access_control_policy_specification_and_enforcement?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/224630089_A_context-aware_access_control_framework_for_e-_Service_provision?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/224630089_A_context-aware_access_control_framework_for_e-_Service_provision?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/224630089_A_context-aware_access_control_framework_for_e-_Service_provision?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/224630089_A_context-aware_access_control_framework_for_e-_Service_provision?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/267152429_Enforcement_of_Security_Policy_Rules_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/266659421_Policy_enforcement_within_emerging_distributed_event-based_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/266659421_Policy_enforcement_within_emerging_distributed_event-based_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/266659421_Policy_enforcement_within_emerging_distributed_event-based_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/266659421_Policy_enforcement_within_emerging_distributed_event-based_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/241630514_Unify_to_bridge_gaps_Bringing_XMPP_into_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/241630514_Unify_to_bridge_gaps_Bringing_XMPP_into_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/241630514_Unify_to_bridge_gaps_Bringing_XMPP_into_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/241630514_Unify_to_bridge_gaps_Bringing_XMPP_into_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/4194211_On_the_creation_discovery_of_topics_in_distributed_publishsubscribe_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/4194211_On_the_creation_discovery_of_topics_in_distributed_publishsubscribe_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/4194211_On_the_creation_discovery_of_topics_in_distributed_publishsubscribe_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/4194211_On_the_creation_discovery_of_topics_in_distributed_publishsubscribe_systems?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/221609655_Attribute-based_encryption_for_fine-grained_access_control_of_encrypted_data?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/221609655_Attribute-based_encryption_for_fine-grained_access_control_of_encrypted_data?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/221609655_Attribute-based_encryption_for_fine-grained_access_control_of_encrypted_data?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==
https://www.researchgate.net/publication/221609655_Attribute-based_encryption_for_fine-grained_access_control_of_encrypted_data?el=1_x_8&enrichId=rgreq-2612b2cb46b25aa9d9a4b1468b75ea01-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgxNjE1MjtBUzozODI5NjMyNzY2MzIwNjVAMTQ2ODMxNjk2ODk3OA==

