
7559B–AVR–12/06

Microcontrollers

Application Note
AVR480: Anti-Pinch System for Electrical Window

Automotive motorized window or door apparatus which closes automatically involve

risks for trapping, squeezing or injury to people. They must reverse their movement in

case the force applied by the motor gets higher than one normalized limit. The feature

implies the constant monitoring of the speed, current, position of the glass. For cost

and simplicity reasons, the system described in this application note uses universal

brush motor equipped with hall effect sensors. The detection algorithm is based on

speed derivate and torque and has been verified for robustness and fault tolerance. It

is applicable to all ATMEL AVR® with A to D converter and Interrupt-on-Change I/O.

Powered
Equipments in
Modern Cars

Today, electronic components and systems account for over 20% of the cost of a high end pas-

senger car. The ability of dense electronics to better control sensors and actuators is utilized to

enhance comfort and safety in cars and it is very predictable that most of the middle and upper

class vehicles will be systematically equipped with motorized window or door systems.

The majority of these equipments come with full automation, means that they must be accompa-

nied by safety systems to prevent people injury or mechanical degradations.

The legislation offers set of rules to which powered systems must comply. This is particularly

true for window lifts or sliding doors. This application note describes how to implement an anti-

pinch algorithm which was initially developed for a powered window but which can be easily

adapted to any other moving part.

The Standards The automotive power-operated windows are governed by international standards, like

MVSS118 in USA or 74/60/EEC in Europe. For those relatives to the elimination of danger to

children, the requirements expressed in these documents can be summarized as follows (see

Figure 1):

• Detection area: 4 mm to 200 mm,

• Maximum pinch force = 100N,

• Reverse direction on a pinch.

• Tests with determined deflection ratio objects: 5N/mm to 20N/mm

Figure 1. Anti-Pinch window lift rules as per MVSS118

4mm

200mm
 2

7559B–AVR–12/06

AVR480

 AVR480
Hardware
Consideration

Different detection strategies are possible to determine whether an obstacle is entering the criti-

cal pinching area:

• Without mechanical contact. It reacts before the pinch effort is exerted on the object. This is

the optimal protection since no force is applied to the obstacle. It is also independent to

vibration, aerodynamic variations, deformations. But, it requires integrated sensors (infrared,

ultrasonic, ...) with their electronic modules and wires leading to additional costs.

• With mechanical contact. The pressure measurement will tell the system an object is being

pinched. Also there, designers have two fundamental technologies available:

– Direct measurements: Force sensors or contactors are integrated on the door seal.

These solutions are inherently high cost and reduce the styling for window/door

designs

– Indirect measurements via physical monitoring. This is a globally cost optimized

solution.

Anti-Pinch
Algorithm
Specification

The pinch detection algorithm shall, at first, respect the standards (FMVSS118 & 74/60/EEC)

requirements:

• Detection area from 4 to 200mm

• Maximum exerted force of 100N

• Reverse direction on Pinch detection

• Normalized tests for validation

It has to be adaptive since:

• The mechanical elements involved in the lift system will vary with time (ageing, local

deformation, wear, ...)

• The electrical characteristics could evolve significantly

• The environment will affect the friction forces (temperature, moisture, freeze, etc.)

The system should not react to disturbances neither detect inopportune pinches. It must be

robust against air friction, road vibration, power-cuts, etc...

Solution Using
Motor’s Physical
Parameters

The force applied to the glass can be extrapolated from the current through the motor. The posi-

tion of the moving elements permanently provides information on speed. Both parameters can

then be used to determine whether an obstacle has been encountered and whether:

• It is in the detection area

• The force applied gets higher than the limit

This document describes one anti-pinch algorithm developed to work with motor current mea-

surements and hall-effect speed indications. With very little changes, it can adapat to other

systems like slidding doors or roof panels.

Modeling,
Simulation

To better design the pinch-detection algorithm, the physical parameters involved in the lift sys-

tem have been extracted. Starting from a generic description of an opening/closing aparatus,

one more precise model has been developed for the powered window. It is broken down into

several main components as illustrated in Figure 2.
 3

7559B–AVR–12/06

Figure 2. Powered Window Mechanical Components

The identification of the mechanical components leads to consider:

• Motor Effects

– Mechanical Parameters

– Electrical Parameters

• Window-Lift:

– Frictions (limited to slides)

– Machanical non-linearity (coupling mostly)

– Inertia (glass weight)

Motor Model The DC universal motor used can be modeled using a very classical scheme as illustrated in

Figure 3.

Figure 3. DC Motor Equivalent Model

M

Motor

Endless screw

« Flexible »

coupling

Non-linearity

Roller for cable

cable + sheath slides Pulley Cable window fixation

J

f
U

i(t)

U

e(t)

L

R

i(t)
 4

7559B–AVR–12/06

AVR480

 AVR480
Differential (t) and Laplace domain (p) equations are extracted for Electrical and Mechanical

elements:

The model chosen is a second order process. This allows the simulation of the motor, with its

power supply (Voltage), including speed and current measurements. It also authorizes to inject

disturbances or connect load (Co). It is detailed in Figure 4.

Figure 4. Second Order Motor Model

dt

di
LtRitetU ++=)()()()()()()(pLpIpRIpEpU ++=

)()(tkte Ω= �)()(pkpE Ω= �

)()(tiktm �= , motor torque)()(pIkpM �=

)()(tftm
dt

d
J Ω−=

Ω

)()()(pfpMpJp Ω−=Ω

LpR +

1
K +

-- Jpf +

1

K

+
--

U I Cem

Co

Ω

Ω

E

M

(p)=

K*U(p) + Co(R+Lp)

(f + Jp)(R + Lp) + K²
 5

7559B–AVR–12/06

Window-lift Model In addition to the DC motor model, the components from the window-lift system must be

inserted. They are introduced to estimate the torque provided by the motor, and to access to

position, speed and acceleration. The mechanical elements are described in Figure 5.

Figure 5. Window-lift Model

This model is executed to obtain system behavior and to verify the pinch-detection algorithm.

Described parameters and others (static and viscous frictions, weight,...) are tuned and intro-

duced in the model to verify their influence.

Figure 6. Full Window-lift and Pinch-detection Algorithm Model

 ()MgFzFzM
n

r
T sv +++≈

221
&&&

M

T

F

1

1

1

T2

2

Weight

F

F

Z

Z

2Z

Mg

n : Gear ratio

r : Radius

T1, T2 : Torque

Fv : Viscous Friction

Fs : Static Friction

n

r

motor

Mechanical

components

sensors
Anti-pinch

Algorithm

Pinch &

Disturbances
 6

7559B–AVR–12/06

AVR480

 AVR480
Pinch Detection
Algorithm

Usual pinch-detection algorithm operation is using indirect measurements out of the window-lift

system:

• Current (torque)

• Position (speed)

The algorithm detailed in this document agregates two techniques based on

• Calibrated torque stored in non-volatile memory: Preliminary learning sequence is executed

and torque values are stored in memory. This is quite memory consuming and requires

regular calibration sequences

• Speed derivate calculation: Interesting method since it requires less memory but needs

more computing power

and takes benefit from the two methodologies.

Pinching Condition A pinch is detected by comparing the current measurement with a reference (see Figure 7).

M(t)) kϕ x i(t) = K x i(t)

The threshold can be determined out of the Motor Torque constant (K) combined with the

response time of the system (Motor and the load).

Figure 7. Condition for Pinch

Current Reference

Synthesis

One solution to elimnate need for calibration is to calculate expected current all along the mov-

ment. One pinch condition makes the speed decreasing and the current growing upassociated

with increasing torque. Those two conditions are used to determinate the occurence of a pinch.

In this document, speed derivate is preferred for its higher robustness to noise or fast

disturbances.

An example is given in Figure 8. The Current Reference (Iref) is permanently calculated until the

speed increases or remains unchanged. As soon as the speed decreases rapidly (Derivate

becomes negative), Iref is frozen. Current through the motor (Imot) continues to be measured

and compared with Current Reference + Margin. In case Imot gets higher than the limit, then a

Pinch is declared and several actions are taken by the application (First is to stop the motor and

reverse its rotation to release the obstacle).

iref

i measured

Threshold

t

iref

Pinch
 7

7559B–AVR–12/06

Figure 8. Example of a Pinch detection

Algorithm Robustness

Current Filtering

The permanent calculation of the Iref allows for highly adaptative algorithm. To even increase

the robustness of the alogrithm, the Current Reference is averaged over 8 consecutive mea-

surements (see Figure 9).

Figure 9. Global Current Reference Synthesis Principle

Algorithm Robustness

Blocking points

As Iref permanent calculation allows a highly adaptative algorithm, local great frictions variations

called blocking points could involve bad pinch detection. Indeed, a local friction increase, even-

tually in addition to other disturbances (bumpy road, wind...) could result in a pinch condition, as

Iref would be frozen.

Those blocking points are detected the same way as pinches. The difference between current

and reference is monitored. When it is greater than a threshold, it is detected and blocking point

charateristics are stored into EEPROM.

A blocking point is described only by a position interval and an event counter (number of detec-

tions) to minimize memory requirements. It could be more precise by storing magnitude in the

interval or by using several threshold. But it would use more memory.

A table containing all hard point informations is stored in non volatile memory

When a blocking point is known (stored in table) and its event counter allows to consider it as a

blocking point, the threshold is added to pinch margin, in the correspondig interval, to increase

robustness.

Rotation speed

Derivate speed

Current Imot

Reference Iref

Example: blocking point

When derivate is negative,

reference is frozen

Example: pinching

t

t

t

t

Measured

current Imot
Average (8

samples)

Low pass (2

samples) Exploited current

Derivative speed

Current

Reference Iref

Imeas
 8

7559B–AVR–12/06

AVR480

 AVR480
Figure 10. Blocking point example

State Machine The main finite state machine (FSM) manages motor commands and pinch detection (Figure 11

presents states for upward movements. Downward operation is presented in Figure 12).

Figure 11. Finite State Machine for Moving Upward Operation

Position: upward (cm)

Deformation:

Transition period

Timeout

Stop Start up

Upward Cmd

backlash

Stopping Cmd

Pinch condition

Obstruct

Pinch

stop motor

Timeout

Out of area

Go up

High position

Or Timeout

High position

Ou Timeout

Pinch area

Reverse

direction

Delay (no current)

Out of pinch area

Stop motor

Move

downward

Move up

Stop motor

 9

7559B–AVR–12/06

Figure 12. Downwward Movement Finite State Machine

Adaptation function,

portability

FSM requires parameters (backlash, top and bottom ends, hall sensors resolution...) to work

properly. Those parameters could be constant parameters or measured at initialisation. Some of

them could change from one window lift to another. Thereby, optional adaptation function

acquire those parameters at first initialisation by operating the window lift. It also monitors bloc-

king points to initialize the memorization table.

This optionnal adaptation routine disables anti-pinch while running. It then operates window lift

downward and upward to detect bottom and top positions. Simultaneously, it monitors the block-

ing points. To acquire backlash, It operates downward and upward into the pinch detection area

(by comparing current reference to acquired current).

Other Interesting

Functions

Not described here are secondary functions necessary for Window-lift operation:

• Measuring current, filtering

• Hall-Effect interrupt generation, counting, speed calculation, direction

• Push-button management

• Memorization of critical parameters (position, last operation direction, ...) in case of power-

fail

Stop

Stop motor

Upward Cmd

Stop

request

Cmd

Timeout

Stop motor

Move down

Timeout

Bottom position Or Timeout

Calibrate / Init of the position

Move downward
 10

7559B–AVR–12/06

AVR480

 AVR480
Simulation Results Numerous simulations have be ran to assess and tune the different parameters for the detection

threshold loop. Figure 13 visualizes how the speed and motor torque behave at the first and sec-

ond ‘go-upward’ commands. Also, a pinch condition is injected at t=10s with a compression

spring of 10N/mm.

Figure 14 shows the same curves but disturbances in motor torque are injected (frequency of

10Hz, 50N), after a second ‘go-upward’ command.

Figure 13. Simulation of the Algorithm with two Consecutive ‘Go-Upward’ Commands

1. The non-linearity of the transmission causes a speed overvalue at motor start. The torque

looks like un-coupled for a few moment.

2. There, the elasticity of the transmission system is no more involved and the torque and speed

images are different.

1* 2*

1* 2*

Motor speed (seen from window: dm/s)

Pinch Force (N)

Current (A)* acquisition gain, after average and reference.

Reverse direction

Pinching

Current – Reference

> Threshold

t

t

t
 11

7559B–AVR–12/06

Figure 14. Algorithm Simulation Injecting 10Hz, 50N Disturbance

AVR
Implementation

The algorithm detailed in the previous paragraphs has been implemented and tested using an

AVR ATMEGA88 based board.

Hardware

Specification

The hardware used for the implementation of the algorithm is described in Figure 15. It imple-

ments one standard ATmega88 as well as analog chain to measure motor current. It has two

hall effects sensors. The motor direction is controlled via one two-poles relay while the ON-OFF

of the motor is activated by a Mosfet.

Figure 15. ATmega88 Controlling the Window-lift with Anti-pinch Feature

The software involves several microcontroller resources as defined in Table 1.

Current (A)* acquisition gain, after average and reference.

Pinch Force (N)

Motor speed (seen from window: dm/s)

Shunt

V Battery

M

-

+

Hall Sensor

x2

AVR

ADC

INT

out

out
 12

7559B–AVR–12/06

AVR480

 AVR480
Task Scheduling By considering, the algorithm described previously, as well as the allocation of hardware and

software resources, we obtain the following scheduling of the program

Normal Operations This schedule is valid when the algorithm is running in standard operating condition, i.e. when

the motor is operating (rotating) or is stopped. Indeed, position, speed and reference calcula-

tions are refreshed when events occurs from the position sensors (hall effect sensors) or don't

have to be done (when the motor is stopped in a stable and normal state).

Figure 16. Task Scheduling When Normal Operation

Table 1. Hardware / Software Partitioning

Feature A to D

Converter

Timer0

(8-bit)

Timer1

(16-bit)

PCINT9 EEPROM IDLE

(Soft)

Current Acquisition X X

Position, Speed,

direction

X x

Determine Current

Reference

X X

Timeout X

Save Parameters X X

Filter X

Anti-Pinching X

Operate Window-Lift X

Timer 1 overflow interrupt

Computation of position, derivate speed,

current reference

Edge on position sensor

PCINT9 interrupt

Timer 0 overflow

Idle

Filtering, Window-lift operations, Anti-pinching…

Reset of timer counter

ADC : Current acquisition
 13

7559B–AVR–12/06

Other Operations When the motor is brutally stopped, rotates abnormally slow or doesn't start for several reasons

(motor blocked, hall sensor disconnected…), timer1 is used to generate a timeout and to shut

down the power (or to reverse direction).

Figure 17. Task Sceduling When Timeout or Parameter Save Request has been Set

Algorithm porting Such an algorithm should be portable from one opening aparatus to another. So, it uses like a

database stored into eeprom, which contains algorithm parameter set (extracted from model).

This allows algorithm to be portable. Refer to algorithm adaptation procedure (AVR191) for more

details.

Software
Description

All code is implemented in C language using IAR EWAVR 4.20. Implementation of basic func-

tions (position management, initializations, current measurements, window operations and anti-

pinch monitoring) requires 2Kb of flash memory. Adding extended functions like eeprom stor-

age, calibration, adaptation, blocking points detection increases code size up to 5.7Kb.

void init_window_peripherals (void)

Initialize pin change interrupt to be used with a Hall effect position sensor (sensitive to rising and

falling edges). It also initializes timers and the ADC used to measure speed and motor current.

void init_window_parameters (signed char *go_down)

This function load window lift parameters from EEPROM or from default values, to initialize the

window-lift. Those values are window dimensions, sensor values, pinch threshold, pinch area,

last known position… If a default is found on position, it is able to ask for a go down command to

initialize the window-lift at bottom-end limit.

void init_window_size_position()

Allows to automatically operate window down, then up to detect top and bottom positions, iden-

tify blocking points and backlash : It's an adaptation routine.

void save_window_parameters(void)

This function saves window lift parameters to EEPROM.

Timer 0 overflow

ADC : current acquisition

Idle

Interruption PCINT9

Interruption Timer 1 overflow

Timeout Save parameters into

EEPROM
 14

7559B–AVR–12/06

AVR480

 AVR480
U8 window_ctrl (signed char *up_cmde, signed char *down_cmde ,U8

no_anti_pinch)

This contains the window-lift state machine. It controls window operations, with given events

parameters. It monitors the position, up and down end limits, and the anti-pinching condition. It

returns the state of the window-lift (same value as the get_window_state function).

__interrupt void hall_sensor_ISR (void)

This interrupt sub-routine is executed on hall sensor edges. It computes rotation direction, posi-

tion, derivative speed and motor current reference.

It's also able to detect a default on a hall effect sensor (which is not connected to an interrupt

pin) by counting successive direction changes. It is used to force the window to stop after a

defined step.

__interrupt void TIMER0_OVF_ISR (void)

This interrupt sub-routine is executed on timer 0 overflow to shedule ADC conversion starting.

signed char get_window_state (void)

It returns the state of the window-lift state machine (value used in the window_ctrl function).

signed char force_window_state (signed char temp)

Set-up window-lift state: useful to force operations (stop request…).

unsigned char mean (unsigned char)

Compute a mean on the 8 last samples. Used for filtering motor current.

void push_button (signed char *push)

This function monitors a push button and generates operation command events to be transmit-

ted to the window_ctrl function.

U8 blocking_point(signed char window_state)

This function monitors blocking points by comparing current value with reference. It shall be syn-

chronized with window control state machine. So, it requires window_ctrl to be called before and

its returned state shall be provided in parameter.

U8 update_point (void)

This function shall be called by blocking_point routine to sort, create or refresh blocking points

data table when a blocking point has just been completly detected. When this blocking point was

existing, it updates its event counter and its position interval. If it wasn’t existing, routine insert it

in the blocking points table.

void clean_point(void)

This routine shall be called by blocking_point routine and the end of each upward operation.

It’s in charge of decreasing blocking point event counter in the parsed area. It cleans blocking

points which event counter has decreased to zero (means they no more exists or it was a distur-

bance or a pinch and have no more been detected)
 15

7559B–AVR–12/06

U8 get_block_point(U16 position)

This function returns the corresponding threshold value to add to pinch margin value if a block-

ing point has been confirmed at the provided position in parameter. Otherwise, when there are

no blocking point at this postion, it returns zero.

Main Control Loop Figure 18. Main Control Loop

ADC end
conversion

Inits

clear conversion flag

current filtering

yes

Read Push buttons

Window-lift control

monitor blocking points

save parameters
 16

7559B–AVR–12/06

AVR480

 AVR480
Hall effect Position

Sensor Interrupt Sub-

routine

Figure 19. Hall effect Position Sensor Interrupt Sub-routine

 Hall sensor ISR

save timer content

Direction ?

decrement position increment position

upward

downward

Default ?

stop request

yes

dv > 0 or
ref < current

compute derivative speed (dv)

update current reference

yes

end ISR
 17

7559B–AVR–12/06

Window Control State

Machine

Implementation

Figure 20. Window Control State Machine Implementation (part 1)

state

stop state

motor off

go up cmd?

direction = up

motor on

go down cmd?

direction = down

no

state = start_up
state = go_down

reset timeout
reset timeout

start_up state

backlash end

state = pinch

Timeout

state = go up

no

back up start position

current>0

no

cmd?

error : motor
disconnected

no

no

state = stopping
no

go_up state

go up or down cmd

state = stopping PINCH or Timeout

no

position>4mm

state = obstruct

end stop

no

motor off

state = stop

Timeout

no

update position

motor off

state = stop

end stop

no

motor off

state = stop

null current &
pinch area

error : motor off after
a step

no

obstruct state

go down cmd?

state = stopping PINCH area

no

state = pinch end stop

no

state = stop Timeout

update position

motor off

state = stop

no

no

state = go up
 18

7559B–AVR–12/06

AVR480

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are®

are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as
components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl

Route des Arsenaux 41

Case Postale 80

CH-1705 Fribourg

Switzerland

Tel: (41) 26-426-5555

Fax: (41) 26-426-5500

Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Memory

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France

Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park

Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2

Postfach 3535

74025 Heilbronn, Germany

Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00

Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature
 Printed on recycled paper.

7559B–AVR–12/06

	Powered Equipments in Modern Cars
	The Standards
	Hardware Consideration
	Anti-Pinch Algorithm Specification
	Solution Using Motor’s Physical Parameters
	Modeling, Simulation
	Motor Model
	Window-lift Model
	Pinch Detection Algorithm
	Pinching Condition
	Current Reference Synthesis
	Algorithm Robustness Current Filtering
	Algorithm Robustness Blocking points
	State Machine
	Adaptation function, portability
	Other Interesting Functions

	Simulation Results
	AVR Implementation
	Hardware Specification
	Task Scheduling
	Normal Operations
	Other Operations

	Algorithm porting
	Software Description
	Main Control Loop
	Hall effect Position Sensor Interrupt Sub- routine
	Window Control State Machine Implementation

