amforth: Forth for AVR ATmega
microcontroller

Matthias Trute

amforth: Forth for AVR ATmega microcontroller
by Matthias Trute

Published 2008
Copyright © 2007, 2008 Matthias Trute

Table of Contents

Overview vi
1. First Steps 1
L1, USET INEEITACE ...ttt ettt e et e e e tve e e ate e eetaeeetaeeeseeeeeaeeeeaveeennns 1

2. Hardware 2
2L FUSES ..ttt ettt et et e e e e e tb e e e tbeeeetbeeeatbeeetbaaetaeaatbeeabaeeabeeeateeenabaeeaaraeans 2

3. Source Organisation 3
3.1, OVEIVIEW eieuiiiieiiieeitee ettt e ettt e ettt e et e e sttt e e e abeeesaaae e ebeaasseeessaeessaeassseeasssaessssaaasssseassaeessseaasssesansns 3

3.2, COTE SYSTEIM ..uieutieiieeireeieentteeite et esteesateeteesbeesttesuseesbeesstesatesabeensaesstesateenseenseeseseenseeseesssesnseenseenns 3
3.2.1. DICHONATY fI1ES ..euveeuiieiieiiieiieeite ettt sttt et e st s e et e st e sabesabeesbaesanesaees 3

3.2.2. DIEVICE SEUMNZS ..euveeuveetieriieeitertee st et et e stte et eteesbeesibesabe e bt e sabesaseebeesstesasesabeensaenanesaees 4

3.3, APPLCAION COAE ...eonviiiiiiiieiieeieestt ettt ettt sttt et s te e bt e bt e saaeebeebeesbseenbeenseenne 4

4. Architecture 5
.1 OVEIVIEW vt e ettt e eeeeee e e ettt e e e eta e e e e eetaeeeeeeetaaeeeesebaseeeeeastsseeeeesraeeeeeantaseeeeasraeeeeeansreeens 5

4.2. CPU -- Forth VMM Mapping.......cc.coceecuiriiieniinieieeie ettt ettt ettt sne s 5

4.3, COTE SYSIEIM ..c.uiniieiieie ettt ettt ettt a e et st e a e s et eae st eae b e e e ene e enesaeen 5
4.3.1. Threading MOlccoouiiiiiiiiiiiiieee ettt sttt 6

4.3.2. TNNET INTEIPIOLET ... eeeetieiietieeiete ettt sttt ettt et et et e e st es et e ebee e e sae et e saesneentenaeens 6

.33, SHACKS .. uttiiie et e bt e e e e et a e e e e etta e e e e eaataaaeeaarbaeaeeaataeeeeeannres 7

434 INEEITUPLS . c.eeteeriteeteeeteeret ettt ettt et sttt et st e e e bt e sae e e bt e bt e sbeeeabesbeenbeesmbeeaseenne 7

4.3.5. MUIEASKING . ..cceeeteeeieie ettt ettt st b et b et s bt et esbe st tenbeens 8

4.3.6. Exception Handlingc.coeeiiiiiiiiineiiee ettt 8

3.7 USCT ATCA..ccciceuiiieeeeeiieeeeeecte e e e eetteeeeeetteee e e e tbeeeeeeasaaeeeeasstsaeeeasasresseeasssaseeeassaneeeannsres 8

4.4, MEMOTY LAYOUL....ctiiiiiitiiiietiitieteet ettt ettt ettt b et b ettt et e st s bt et b et e bt eaeeeesbean 8
QAL FLASR .ottt e et e e e e te e e e taeearaaens 9

442 EEPROMoooiiiiiiiiee ettt ettt ettt e et e e et e e e te e e eaae e e saaeeeebeeeaseeeraeaan 10

BAZ . RAM .ottt e et ettt e e et e e e e ba e e e atae e tbeeeateeeaaeaan 10

5. Forth Implementation 12
5.1 ANS WOTAS ...ttt ettt e e st e e et e e e abeeeteeeeataeesabeeaessesensseeeasaaanssesesseeesaaans 12
5.1.1. Core and Core EXTooooiiiiiiieeiiieeiee ettt ettt ve e e e v e e e taeeeaseeeaaeeeavaeeas 12

5. 1.2, BIOCKu i iitiieiiie ettt ettt e et e tb e e e b e e e ab e e eabaeetbeeatbeeeaaeeeraeaas 12

5.1.3. DOUDIE NUIMDET ...cccuviiiiiiieeiiie ettt ettt e et eesive e e b e e esaseseabaaeaaeeenssessnsseeenseeans 12

5. 1.4 EXCEPUON ettt ettt ettt ettt et s e st e be e s et e s it e e bt e s bt e satesabeenbeesaeesaneebaenaee e 12

50150 FACTILY ettt ettt st ettt st e it st enbaenbee e 13

5.1.6. FIIE ACCESS...uviieireeeiiieeiie e et ettt e ettt ee it e e st e ettt e e baeestbee e tbeeesseeessaaessseeansseesnsseesnseeans 13

5.1.7. FloAtiNg POINE ...covviiiiiiiiiiiiieieeieesteeeet ettt ettt sttt et sttt et e st e beenaee e 13

T R R 5o T 1 LSRR 13

5.1.9. MemoOry ALIOCALIONcccuiruiiieiiriieiiniietesteet ettt et s n e eae e e 13

5.1.10. Programming TOOIScccceeueriiriiiiiniieiirt ettt e 13

5.1.11. SEAICH OFAeT.......euvviieieiieeee e ettt e et eeta e e e e e tra e e e e enraeeas 14

ST T20 SHINES ottt sttt et e e 14

5.2. aMIOrth EXLENSIONSvviieiiiiiiiieeeiiiie e e et e e ettt e e e e eeteeeeeeetaeeeeeeebaeeeeeeesteeeeeeesraeeeseesreeeeeeenreneas 14
5.2.1. IMCU ACCESS.uuiieiieiiiieeeeeitiiiee e ettt e e eettte e e e eette e e e e eettaeeeesebraeeeseesbaseeeeessaeeeseanssaeeeeasreeeas 14

5.2.2. MIBIIIOTY ..ottt ettt ettt ettt st e b e s et eat e et e bt e s at e st e e bt e saeesateenbeebee e 15

5.2.3. INPUL OULPUL. .ttt sat e et esbeesat e sabeebeesaeesaneenbeenneenas 15

iii

5.2.4. Strings

6. Library

6.1, HATAWAIE ACCESS.....uuveiieieeiiieeeeeeieee e e eeeteee e e eeetae e e e eeetaeeeeeeetaeeeeeeetaaeeeeeeateeeeeeentreseeeeentsseeeeensreeeas
6.2, SOFEWATE MOAUIESvvvvviiiiiiiiieieeeeeeeeee ettt e e e e e e e e e e e e s s aaatreeeeeeeeeeeeeessssnnns
6.2.1. Multitasking

7. Tools

T L HOSE et e e et e e e e e —— e e e e eet—aeaeeaataaeaeeatraaeeeaantraaaeeanraaeas
7.1.1. Documentation

7.1.2. Uploader

8. Final Remarks
8.1. MOTE ANSOA WOTAS.......eviiiieieiiiiee ettt e e et e e e e tae e e e e etbae e e e e abaaeeeesnraseeeesnsreeeaeans

8.2. MOTE CONLIOILET TYPES ..ottt b et bt et ebe e sbe e e e sbeenees

8.3, CONIIIDULOTS.cuviieeiiie ettt ettt ettt ettt e et e e ettt eeeateeeebeeeeasaeeetseseesseeessseesseesssesesseeeseaans

Bl SUPPOTT ..ttt bttt h et e h et b e e et e b e bt et s bt et s bt st e b e bt et e bt et e bt eneen

List of Tables

4-1. REZISTET IMAPPIIIE -.cueeveiientietieieete ettt ettt ettt et et s h et e s bt ea et e e bt etesbe et e sbeeae e beebeeneesbeestenbesseentenbeans

Overview

amforth is a Forth system for the AVR ATmega microcontroller family. It works on the controller itself
and does not depend on any additional hard- or software. It places no restrictions on using external
hardware.

This document covers version 2.6

amforth implements a large subset of the Forth standard ANS94. Most of the CORE and CORE EXT
words and a varying number of words from the other word sets are implemented. It is very easy to extend
or shrink the actual word list for a specific application by just editing the dictionary include files.

The dictionary is located in the flash memory. The built-in compiler extends it directly.
amforth provides full access to all interrupts. The interrupt handler routines are forth words.
amforth is published under the GNU General Public License version 2.

The name amforth has no special meaning.

amforth is a new implementation. The first code was written in the summer of 2006. It is written "from
scratch”" using assembly language and forth itself. It does not have a direct relationship to any other forth
system.

The first lines of code were written with the AVR Studio and its simulator. Soon the switch to real
hardware (an evaluation board) and to Linux based development was done.

Vi

Chapter 1. First Steps

The first steps require a working ATmega microcontroller with an RS232 connection to an PC or a
terminal like the VT100 or similar hardware. A customization may change these requirements.

1.1. User Interface

amforth has a simple user interface. Connect your system to a serial terminal (or a PC) and you get the
forth prompt > .

amforth 2.5 ATmega32

>

words

cell+ cells abort abort" [char]
>

Chapter 2. Hardware

2.1. Fuses

Amforth uses the self programming features of the ATmegas to extend the dictionary. It is ok to use the
factory default settings plus (!) changes for the oscillator settings. It is recommended to use a higher
CPU frequency to meet the timing requirements of the serial terminal.

Chapter 3. Source Organisation

3.1. Overview

The source code can be processed with both the AVR Studio and the linux avr assembler avra.

amforth needs an assembler to generate the hex files for Flash and EEPROM. That does not mean that
every word is actually written in assembly language however. Most of the words are written in forth
itself, but are precompiled into assembly syntax. This solves btw the chicken-and-egg problem too: how
to compile the compiler words.

amforth consists of a great number of relatively small source files. Nearly all words are coded in their
own source file. A number of files are organized with include files, called dict . inc . Currently 3 such
files exists: dict_minimum, dict_high.inc and dict_compiler.inc.

There are two additional files: amforth.asm and macros.asm . The first one is the master file and the
only one the application needs to include. The file macros.asm contains some useful assembler macros
that make the source code easier to read.

3.2. Core system

The file amforth.asm is the core of amforth. Here is the startup code for the microcontroller, and the
forth inner interpreter with the interrupt service routine. It includes the dictionary files.

3.2.1. Dictionary files

The dictionary files have two tasks: First they include the word definition files. Second, they determine
each word’s location in the resulting flash layout. The file dict_high.inc contains all words for the
NRWW flash section, Since the word I! cannot write to this address range, no new words can be
compiled to this section at runtime. Thus it is advisable to include as many words as possible in
dict_high. inc if the amount of writable dictionary space is an issue.

A useful forth system needs at least the file dict_minimum.inc , which includes the serial IO and the
forth interpreter words.

An almost complete forth system with a compiler needs the third include file: dict_compiler.inc.

Chapter 3. Source Organisation

There are a few words left out from the dictionary lists. These words are either not always needed or are
some variants of existing words or simply cannot be included in the core system due to size limitations in
the NRWW section with smaller atmegas.

3.2.2. Device Settings

Every Atmega has it own specific settings. They are based on the official include files provided by
Atmel, which define the most important settings for the serial IO port (which port and which
parameters), the interrupt vectors and some macros.

The last setting is a string with the device name in clear text. This string is used within the word VER.

3.3. Application Code

Every build of amforth needs an application. There are a few sample applications, which can be used
either directly (such as the AVR Butterfly) or serve as a source for inspiration (template application).

The structure is basically always the same. First the file macros.asm has to be included. After that some
definitions need to done: The size of the Forth buffers, the CPU frequency, initial terminal settings etc.
Then the device specific part needs to be included and as the last step the amforth core is included.

For a comfortable development cycle the use of a make utility such as make itself is recommended. The
assembler needs quite a few settings and the proper order of the include directories. The sample
applications use the standard make, but others such as ant or maven can be used as well.

Chapter 4. Architecture

4.1. Overview

amforth is a 16 bit Forth implementing the indirect threading model. The flash memory contains the
whole dictionary. Some EEPROM cells are used to hold initial values and the dictionary pointers. The
RAM contains buffers, variables and the stacks.

The compiler is a classic compiler without any optimization support.

amforth uses most of the CPU registers to hold vital data structures: The data stack pointer, the
instruction pointer, the user pointer, and the Top-Of-Stack cell. The hardware stack is used as the return
stack. Some registers are used for temporary data in primitives.

4.2. CPU -- Forth VM Mapping

The default Forth registers are mapped as follows

Table 4-1. Register Mapping

Forth Register ATmega Register(s)
W: Working Register R26:R27

IP: Instruction Pointer XH:XL

RSP: Return Stack Pointer SPH:SPL

PSP: Parameter Stack Pointer YH:YL

UP: User Pointer R4:R5

TOS: Top Of Stack R6:R7

X: temporary register ZH:ZL

In addition the register pair RO:R1 is used internally e.g. to hold the the result of multiply operations. The
register pair R2:R3 is used as the zero value in many words. These registers cannot be used by user
programs and should never be changed.

The registers from R8 to R15 are currently unused. The registers R16 to R25 used as temporary registers
and can be used freely within one module. They are overwritten by the primitives.

The forth core uses the T bit in the machine status register SREG for signaling an interrupt.

Chapter 4. Architecture

4.3. Core System

4.3.1. Threading Model

amforth uses the classic indirect threaded variant of forth.

4.3.2. Inner Interpreter

For the indirect threading model an inner interpreter will be needed. The interpreter core is responsible
for the interrupt handling too.

4.3.2.1. EXECUTE

This operation reads the cell the IP currently points to and uses the value as the destination of a jump.

4.3.2.2. NEXT

The NEXT routine is the core of the inner interpreter. It performs two flash accesses, the second one is
accessed as EXECUTE.

The very first step in NEXT is to check whether an interrupt needs to handled. It is done by looking at
the T flag in the machine status register. If it is set, the code jumps to the interrupt handling part. If the
flag is cleared the following normal NEXT routine runs.

4.3.2.3. NEST

NEST (aka DO_COLON) first pushes the IP (which points to the next word to be executed when the
current word is done) to the return stack. It then increments W by one flash cell, so that it points to the
body of the (colon) word, and sets IP to point to same location. Then it continues with NEXT, which
begins executing the words in the body of the colon word

4.3.2.4. UNNEST

The code for UNNEST is the word EXIT in the dictionary. It pops the IP from the return stack and
jumps to NEXT.

Chapter 4. Architecture

4.3.2.5. DO_DOES

This code is the runtime that is used by the code compiled by the forth word DOES . It it closely tied to
the action performed by the code compiled by DOES. That code pushed the current address in the data
field to the returnstack and jumps to DO_DOES. DO_DOES gets that address back, saves the current IP
and sets the forth IP to the address it got from the stack. Finally it continues with NEXT.

4.3.3. Stacks

4.3.3.1. Data Stack

The data stack uses the CPU register pair YH: YL as its data pointer. The Top-Of-Stack element (TOS) is
in a register pair. Compared to a straight forward implementation this approach saves both code space
and gives higher execution speed (approx 10-20 %). Saving more stack elements does not really provide
a greater benefit (much more code and only little speed enhancements).

The data stack starts at a configurable distance below the return stack (RAMEND) and grows downward.

4.3.3.2. Return Stack

The Return Stack is the hardware stack of the controller. It is managed with push/pop instructions. The
return stack starts at RAMEND und grows downward.

4.3.4. Interrupts

amforth routes the low level interrupts into the forth inner interpreter. The inner interpreter switches the
execution to a predefined word if an interrupt occurs. When that word finishes execution, the interrupted
word is continued. The interrupt handlers are completely normal forth words without any stack effect.

The processing of the interrupts takes two steps: The first one is responsible for the low level part. It is
called whenever an interrupt occurs. The code is the same for all interrupts. It takes the number of the
interrupt from its vector address and stores this in a RAM cell. Then the low level ISR sets the T flag in
the status register of the controller. The inner interpreter checks this flaf every time it is entered and if it
is set it switches to interrupt handling at forth level. This approach has a penalty of 2 CPU cycles for
checking and skipping the branch instruction to the isr forth code.

The ISR at forth level is a RAM based table much like the low level interrupt table of the execution
tokens associated with the interrupt number.

Chapter 4. Architecture

Interrupts from hardware sources (such as the usart) may not work as expected. The reason is that the
interrupt source is not cleared within the generic ISR. This leads to an immediate re-interrupt. There is
currently no solution but a custom ISR that clears the interrupt source and calls the main ISR. This code
has to be run within the interrupt and cannot be (easily) turned into forth code, since the forth inner
interpreter is not reentrant.

4.3.5. Multitasking

amforth does not implement multitasking directly. It only provides the basic functions. Within the 10
words the deferred word PAUSE is called whenever possible. This word is initialized to do nothing
NOOP .

4.3.6. Exception Handling

amforth implements the CATCH/THROW exception handling. The outermost catch frame is located at
the interpreter level in the word QUIT. If an exception with the value -1 or -2 is thrown, QUIT will print
a message and re-start itself. Other values silently restart QUIT.

4.3.7. User Area

The User Area is a special RAM based storage area. It contains the USER variables and the User
deferred definitions. Access is based upon the value of the user pointer UP. It can be changed with the
word UP! and read with UP@. The UP itself is stored in a register pair.

The size of the user area is defined at compile time in the device definition section. This may change in
future versions.

The User Area is used to provide task local information. Without an active multitasker it contains the
starting values for the stackpointers, the deferred words for terminal 10, the BASE variable and the
exception handler.

A multitasker can use the first 2 cells for own purposes. In that situation the user area is/can be seen as
the task control block.

Chapter 4. Architecture

4.4. Memory Layout

4.4.1. Flash

The flash memory is divided into 5 sections. The first section, starting at address 0, contains the interrupt
vector table for the low level interrupt handling and a character string with the name of the controller in
plain text.

The next section is the initialization code block. It is executed whenever the controller starts. The code
sets up the basic infrastructure for the forth interpreter. This step is finished by calling the forth
interpreter with the word COLD as the entry word.

The 3rd section contains the low level interrupt handling routines. The interrupt handler is very closely
tied to the inner interpreter. It is located near the first section to use the faster relative jump instructions.

The 4th section is the first part of the dictionary. Nearly all colon words are located here. New words are
appended to this section. This section is filled with FFFF cells when flashing the controller initially.

The last section is identical to the boot loader section of the ATmegas. It is also known as the NRWW
area. Here is the heart of amforth: The inner interpreter and most of the words coded in Assembly
language.

The reason for this split is a technical one: to work with a dictionary in flash the controller needs to write
to the flash. The ATmega architecture provides a mechanism called self-programming by using a special
instruction and a rather complex algorithm. This instruction only works in the boot loader/NRWW
section. amforth uses this instruction in the word I!. Due to the fact that the self programming is a lot
more then only a simple instruction, amforth needs most of the forth core system to achieve it. A side
effect is that amforth cannot co-exist with classic bootloaders. If a particular boot loader provides an API
to enable applications call the flash write operation, amforth can be restructured to use it. Currently only
very few and seldom used bootloaders exist that enable this feature.

Atmegas can have more than 64 KB Flash. This requires more than a 16 bit address, which is more than
the cell size. For one type of those bigger atmegas there will be an solution with 16 bit cell size:
Atmegal28 Controllers. They can use the whole address range with an interpretation: The flash
addresses are in fact not byte addresses but word addresses. Since amforth does not deal with bytes but
cells it is possible to use the whole address range with a 16 bit cell. The Atmegas with 128 KBytes Flash
operate slightly slower since the address interpretation does need more code to access the flash (both
read and write).

The technique described above does not work for the Atmega256x. These controllers definitely need a
bigger cell size: 17 bits (or more).

Chapter 4. Architecture

4.4.1.1. Flash Write

The word performing the actual flash write operation is I! (i-store). This word takes the value and the
address of a single cell to be written to flash from the data stack. The address is a word address, not a
byte address!

The flash write strategy follows Atmel’s appnotes. The first step is turning off all interrupts. Then the
affected flash page is read into the flash page buffer. While doing the copying a check is performed
whether a flash erase cycle is needed. The flash erase can be avoided if no bit is turned from O to 1. Only
if a bit is switched from O to 1 must a flash page erase operation be done. In the fourth step the new flash
data is written and the flash is set back to normal operation and the interrupt flag is restored.

This write strategy ensures that the flash has minimal flash erase cycles while extending the dictionary. In
addition it keeps the forth system simple since it does not need to deal with page sizes or RAM based
buffers for dictionary operations.

4.4.2. EEPROM

The built-in EEPROM contains vital dictionary pointer and other persistent data. They need only a few
EEPROM cells. The remaining space is available for user programs. The easiest way to use EEPROM is
the use of forth VALUESs. There intended design pattern (read often, write seldom) is like that for the
typical EEPROM usage.

Another use for EEPROM cells is to hold execution tokens. The default system uses this for the turnkey
vector. This is an EEPROM variable that reads and executes the XT at runtime. It is based on the
DEFER/IS standard. To define a deferred word in the EEPROM use the Edefer defintion word. The
standard word IS is used to put a new XT into the vector.

Low level space management is done through the the EDP variable. This is not a forth value but a
EEPROM based variable. To read the current value an e@ operation must be used, changes are written
back with e!. It contains the highest EEPROM address currently allocated. The name is based on the DP
variable, which points to the highest dictionary address.

4.4.3. RAM

The RAM address space is divided into three sections: the first 32 addresses are the CPU registers.
Above come the 10 registers and extended 1O registers and finally the RAM itself.

amforth needs a few (real) RAM locations for its internal data structures. The biggest part are the buffers
for the terminal I0. RAM Memory is managed by the words VARIABLE and ALLOT.

10

Chapter 4. Architecture

With amforth all three sections can be accessed using their RAM addresses. That makes it quite easy to
work with words like C@ . The word ! implements a LSB byte order: The lower part of the cell is stored
at the lower address.

For the RAM there is the word Rdefer which implements a deferred word, placed in RAM. As a special
case there is the word Udefer , which sets up a deferred word in the user area. To put an XT into them
the word IS is used. This word is smart enough to distinguish between the various xDefer definitions.

11

Chapter 5. Forth Implementation

5.1. ANS Words

amforth implements most or all words from the ANS word sets CORE, CORE EXT, EXCEPTION and
DOUBLE NUMBERS. The words from the word sets LOCALS, BLOCKS, FILE-ACCESS and
FLOATING-POINT are dropped completly.

5.1.1. Core and Core EXT

From the CORE word set only the words >NUMBER, C, CHAR+, CHAR, ENVIRONMENT?,
EVALUATE, MOVE are missing. From the CORE EXT the words C", COMPILE, , CONVERT,
EXPECT, SPAN, PICK, RESTORE-INPUT, ROLL are not implemented.

The following words have non-standard behavior

words created with : are immediately visible. An earlier definition with the same name will never be
accessible. Work around may be done with DEFER /IS .

loop counters are checked on signed compares.

5.1.2. Block

amforth does not currently support block related words. Implementing them is on the roadmap.

5.1.3. Double Number

Double cell numbers do work as expected. Not all words are implemented. Entering them directly using
the dot- notation does not work currently.

5.1.4. Exception

Exceptions are fully supported. The words ABORT and ABORT" use them internally.

The THROW codes -1, -2 and -13 work as specified.

12

Chapter 5. Forth Implementation

The implementation is based upon a variable HANDLER which holds the current return stack pointer
position. This variable is a USER variable.

5.1.5. Facility
The basic system uses the KEY? and EMIT? words as deferred words.

The word MS is implemented as the word 1MS which busy waits almost exactly 1 millisecond. The
calculation is based upon the frequency specified at compile time.

The words TIME&DATE, EKEY, EKEY>CHAR are not implemented.

To control a VT100 terminal the words AT-XY and PAGE are written in forth code. They emit the ANSI
control codes according to the VT 100 terminal codes.

5.1.6. File Access

amforth does not have filesystem support. It does not support any words from this word set.

5.1.7. Floating Point

amforth does not currently support floating point numbers.

5.1.8. Locals

amforth does not currently support locals.

5.1.9. Memory Allocation

amforth does not support the words from the memory allocation word set.

5.1.10. Programming Tools

Variants of the words .S ? and DUMP are implemented or can easily be done. The word SEE won’t be
supported since amforth highly uses an optimization strategy to strip forth headers whenever possible.

13

Chapter 5. Forth Implementation

The other reason for dropping SEE is that amforth is OpenSource software. If your vendor does not
disclose the full source, let me know. He violates the GPL.

STATE works as specified.
The word WORDS does not sort the word list and does not take care of screen sizes.
The words CODE ;CODE and ASSEMBLER are not supported, amforth does not have an assembler.

CS-ROLL , CS-PICK and AHEAD are not implemented. The compiler words operate with the more
traditional MARK / RESOLVE word pairs.

FORGET is implemented but does not fully reset the dictionary state. The better way is using
MARKER .

An EDITOR is not implemented.

[IF], [ELSE] and [THEN] are not implemented.

5.1.11. Search Order

amforth does not support word lists, so no words from the search word set are implemented.

5.1.12. Strings
SLITERAL , CMOVE> and /STRING are implemented.

-TRAILING , BLANK , CMOVE , COMPARE and SEARCH are not implemented.

5.2. amforth extensions

5.2.1. MCU Access

amforth provides wrapper words for the microcontroller words sleep and wdr (watch dog reset). To work
properly, the MCU needs more configuration. amforth itself does not call these words.

14

Chapter 5. Forth Implementation

Microcontrollers supporting the JTAG interface can be programmed to turn JTAG off at runtime. Similiar
the watch dog timer can be disabled. Since both actions require strict timing they need to be
implemented as primitives: -jtag and -wdt .

5.2.2. Memory

Atmega microcontroller have three different types of memory. RAM, EEPROM and Flash. The words @
and ! work on the RAM address space (which includes IO Ports and the CPU register), the words e@ and
e! operate on the EEPROM and i@ and i! deal with the flash memory. All these words transfer one cell
(2 bytes) between the memory and the data stack. The address is always the native address of the target
storage: byte-level for EEPROM and RAM, word-level for flash. Therefore the flash addresses
64KWords or 128 KBytes address space.

External RAM shares the normal RAM address space after initialization (which needs to be done within
the turnkey action). It is accessible without further action.

For RAM only there is the special word pair ¢@ / ¢! which uses the lower byte of the Top-Of-Stack at
transfer. The upper byte is either ignored or set to 0 (zero).

All other types of external memory need special handling, which may be masked with the block word set.

5.2.3. Input Output

amforth uses simple terminal io. A serial console is used. All IO is based upon the standard words EMIT
/ EMIT? and KEY / KEY? . In addition the word /KEY is used to signal the sender to stop. All these
words are deferred words in the USER area and can be changed with the IS command.

The predefined words use an interrupt driven IO with an buffer for input and output. They do not
implement a handshake procedure (XON/XOFF or CTS/RTS). The default terminal device is USARTO
(if more than one USART port is available).

The basic words include a call of the PAUSE command to enable the use of multitasking.

Other 10 depend on the hardware connected to the microcontroller. Code exists to use LCD and TV
devices. CAN, USB or I2C are possible as well. Another use of the redirect feature is the following:
consider some input data in external EEPROM (or SD-Cards). To read it, the words KEY and KEY? are
redirected to fetch the data from them.

15

Chapter 5. Forth Implementation

5.2.4. Strings

Strings can be stored in two areas: RAM and FLASH. It is not possible to distinguish between the
storage areas based on the addresses found on the data stack, it’s up to the developer to keep track.

Strings are usually stored as counted strings. Strings in flash are compressed: two consecutive bytes are
placed into one flash cell. The standard word S copies the string from the RAM into flash using the
word S, .

16

Chapter 6. Library

Amforth does not have a formal library concept. Amforth has a lot of forth code that can be seen as a
library of words and commands.

6.1. Hardware Access

In the device/ subdirectory are the controller specific register definitions. They are taken directly from
the appnotes from atmel. The register names are all uppercase. It is recommended to extract only the
needed definitions since the whole list occupy flash space.

6.2. Software Modules

6.2.1. Multitasking

The Library contains a cooperative multitasker in the file multitask. frt . It defines a command
multitaskpause which can assigned to pause .

The multitasker has the following commands
onlytask (--)

Initialize the task system. The current task is placed as the only task in the task list.

alsotask (tid --)

Append a newly created task to the task list. A running multitasker is temporarily stopped. Make
sure that the status of the task is sleep.

task (dstacksize rstacksize -- tid)

Allocate RAM for the task control block (aka user area) and the two stacks. Initializes the whole
user area to direct IO to the serial line. The task has still no code associated and is not inserted to the
task list.

17

Chapter 6. Library

task-sleep (tid --)

Let the (other) task sleep. The task switcher skips the task on the next round. When a task executes
this command for itself, the task continues until the next call of pause.

task-awake (tid --)

The task is put into runnable mode. It is not activated immediately.

activate (tid --)

Skip all of the remaining code in the current colon word and continue the skipped code as a task.

It is possible to use a timer interrupt to call the command pause and turn the cooperative multitasker into
a preemptive one. The latency is in the worst case that of the longest running uninterruptable forth
commands: 1ms , e! and i! . For a preemptive task switcher a lot more tools like semaphores may be
needed.

18

Chapter 7. Tools

7.1. Host

There a few number of tools on the hostside (PC) that are specifically written to support amforth. They
are written in script languages like perl and python and should work on all major operating systems.

7.1.1. Documentation

The tool makerefcard reads the assembly files from the words subdirectory and creates a reference
card. The resulting LaTeX file needs to be processed with latex to generate a nice looking overview of all
words available in the amforth core system.

The command make-htmlwords creates the linked overview of all words on the amforth homepage.

7.1.2. Uploader

To transfer forth code to the microcontroller some precautions need to taken. During a flash write
operation all interrupts are turned off. This may lead to lost characters on the serial line. One solution is
to send very slowly and hope that the receiver gets all characters. The program ascii-xfer can do the job:

ascii-xfr -s -c $delay_char -1 $delay_line $file > $tty
This works but the upload of longer files needs a very long time.
Another solution is amforth-upload.py . It was initially created by user pix (http://pix.test.at/) . His

algorithm checks for the echo of every character sent to the controller. At line ends the uploader waits for
the ok prompt to continue with the next line.

This algorithm works very fast without the risk of lost characters. An extension of this script provides
limited library support. In the source files a command

#include filename

is used to upload the content of £ilename instead of the two words. The sources will only work with
this uploader utility, others will trigger the "word-not-found" exception on the microcontroller unless
they recognize the #include syntax (similar to the ¢ preprocessor).

19

Chapter 8. Final Remarks

8.1. More ANS94 Words

There are a few missing words from the standard CORE word set. Many of them are related with string
parameters, like evaluate and environment? . The difficulty arises from the fact, that the storage location
of a string cannot be determined by simply lookaing at the address. A solution may be a state smart
implementation with some helper words. If running interactivly, these words may use RAM addresses, if
called within a compiled word they use flash addresses. Not really smart however..

Support for Blocks may be useful. It is not trivial to implement a standard 1KB block buffer on an
Atmega with only 1IKB RAM. It can be useful to deploy block sizes smaller than 1KB to match the
native block sizes of the attached storage devices: serial EEPROM have e.g. 64 bytes, SD-Cards have
512 bytes. Some rather simple code can be used from the library for 2C/TWI EEPROM modules with
native block sizes.

8.2. More Controller Types

amforth can run on the whole range of Atmegas. The only limiting factor is the flash size: amforth needs
7 KB for itself and can address 128 KB. The ATmega256x may be supported with a change in the cell
size from 2 to 3 bytes. The other possible devices are the XMega MCU, that Atmel may publish in the
near future. ATtiny devices are not supported since they lack both flash size and a few instructions that
amforth uses.

8.3. Contributors

amforth would not be the system it now is without the feedback and help from its users. I would like to
thank all of them. The following people made an outstanding work to improve amforth (in no particular
order): Milan Horkel, Ullrich Hoffmann, Michael Kalus, Karl Lunt, Bruce Wolk. But there are many
more that helped by simply asking how to do some tasks.

8.4. Support

Amforth is not a commercial grade software. I hesitate to call it a product. Since you get all the source
code for system, you should be able to solve all problems youself. On the other hand I’'m interested in
any use of amforth and want to know what you’re doing with it. If you find anything strange or faulty
don’t hesitate to mail it to the mailing list (mailto:amforth-devel @lists.sourceforge.net).

20

	amforth: Forth for AVR ATmega microcontroller
	Table of Contents
	List of Tables
	Overview
	Chapter 1. First Steps
	1.1. User Interface

	Chapter 2. Hardware
	2.1. Fuses

	Chapter 3. Source Organisation
	3.1. Overview
	3.2. Core system
	3.2.1. Dictionary files
	3.2.2. Device Settings

	3.3. Application Code

	Chapter 4. Architecture
	4.1. Overview
	4.2. CPU Forth VM Mapping
	4.3. Core System
	4.3.1. Threading Model
	4.3.2. Inner Interpreter
	4.3.2.1. EXECUTE
	4.3.2.2. NEXT
	4.3.2.3. NEST
	4.3.2.4. UNNEST
	4.3.2.5. DODOES

	4.3.3. Stacks
	4.3.3.1. Data Stack
	4.3.3.2. Return Stack

	4.3.4. Interrupts
	4.3.5. Multitasking
	4.3.6. Exception Handling
	4.3.7. User Area

	4.4. Memory Layout
	4.4.1. Flash
	4.4.1.1. Flash Write

	4.4.2. EEPROM
	4.4.3. RAM

	Chapter 5. Forth Implementation
	5.1. ANS Words
	5.1.1. Core and Core EXT
	5.1.2. Block
	5.1.3. Double Number
	5.1.4. Exception
	5.1.5. Facility
	5.1.6. File Access
	5.1.7. Floating Point
	5.1.8. Locals
	5.1.9. Memory Allocation
	5.1.10. Programming Tools
	5.1.11. Search Order
	5.1.12. Strings

	5.2. amforth extensions
	5.2.1. MCU Access
	5.2.2. Memory
	5.2.3. Input Output
	5.2.4. Strings

	Chapter 6. Library
	6.1. Hardware Access
	6.2. Software Modules
	6.2.1. Multitasking

	Chapter 7. Tools
	7.1. Host
	7.1.1. Documentation
	7.1.2. Uploader

	Chapter 8. Final Remarks
	8.1. More ANS94 Words
	8.2. More Controller Types
	8.3. Contributors
	8.4. Support

