Lecture 4

<u>OUTLINE</u>

- Bipolar Junction Transistor (BJT)
 - General considerations
 - Structure
 - Operation in active mode
 - Large-signal model and *I-V* characteristics

Reading: Chapter 4.1-4.4.2

Voltage-Dependent Current Source

- A voltage-dependent current source can act as an amplifier.
- If KR_L is greater than 1, then the signal is amplified.

Voltage-Dependent Current Source with Input Resistance

• The magnitude of amplification is independent of the input resistance *r*_{in}.

Exponential Voltage-Dependent Current Source

 Ideally, a bipolar junction transistor (BJT) can be modeled as a three-terminal exponential voltagedependent current source:

Reverse-Biased PN Junction as a Current Source

- PN junction diode current is ~independent of the reverse-bias voltage. It depends only on the rate at which minority carriers are introduced into the depletion region.
 - ⇒ We can increase the reverse current by injecting minority carriers near to the depletion region.

EE105 Fall 2007

BJT Structure and Circuit Symbol

 A bipolar junction transistor consists of 2 PN junctions that form a sandwich of three doped semiconductor regions. The outer two regions are doped the same type; the middle region is doped the opposite type.

NPN BJT Operation (Qualitative)

In the *forward active mode* of operation: The collector junction is reverse biased. for The emitter junction is forward biased. $\frac{1}{4}$ VBE VCE > VBE 11 \Rightarrow $V_{(B} > 0$ Depletion п $= +1 V = V_{c} - V_{t}$ Region < 1018 cm³ (NA) $\beta = \frac{I_{\rm C}}{I_{\rm P}}$ current gain: $\beta = \frac{I_{\rm C}}{I_{\rm P}}$ $V_{BE} = +1$ $V_{B} - V_{E}$

Base Current

- The base current consists of two components:
 - 1) Injection of holes into the emitter, and
 - Recombination of holes with electrons injected from the emitter.
 "Common emitter"

BJT Design

- Important features of a well-designed BJT (large β):
 - Injected minority carriers do not recombine in the quasi-neutral base region. الم الم الح الله على الم الم
 - → Make quasi-nentral base width small compared to minority-carrier diffusion length LB
 - Emitter current is comprised almost entirely of carriers injected into the base (rather than carriers injected into the emitter).

Carrier Transport in the Base Region

- Since the width of the quasi-neutral base region ($W_{\rm B} = x_2 - x_1$) is much smaller than the minority-carrier diffusion length, very few of the carriers injected (from the emitter) into the base recombine before they reach the collector-junction V_{BE} depletion region.
 - \rightarrow Minority-carrier diffusion current is ~constant in the quasi-neutral base
- The minority-carrier concentration at the edges of the collectorjunction depletion region are ~0.

Minorit Carvier Conc. Q edges of depletion resion tactor oV n X2 X_1

EE105 Fall 2007

Lecture 4, Slide 10

F

Diffusion Example Redux

Linear concentration profile
 → constant diffusion current

Non-linear concentration profile
 → varying diffusion current

Collector Current

$$I_{C} = \frac{A_{E}qD_{n}n_{i}^{2}}{N_{B}W_{B}} \left(\exp \frac{V_{BE}}{V_{T}} - 1 \right)$$
$$I_{C} \cong I_{S} \exp \frac{V_{BE}}{V_{T}} \text{ where } I_{S} = \frac{A_{E}qD_{n}n_{i}^{2}}{N_{B}W_{B}}$$

• The equation above shows that the BJT is indeed a voltage-dependent current source; thus it can be used as an amplifier.

Emitter Current

• Applying Kirchhoff's Current Law to the BJT, we can easily find the emitter current.

$$I_{E} = I_{C} + I_{B} = I_{C} \left(1 + \frac{1}{\beta} \right)$$

$$T_{C} = \beta T_{B} \text{ in forward active mode$$

Summary of BJT Currents

$$I_{C} = I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{B} = \frac{1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$\alpha \equiv \frac{\beta}{\beta + 1} \int_{Common best}^{Common best}$$

$$Current gain''$$

Lecture 4, Slide 14

Parallel Combination of Transistors

 When two transistors are connected in parallel and have the same terminal voltages, they can be considered as a single transistor with twice the emitter area.

EE105 Fall 2007

Lecture 4, Slide 15

Simple BJT Amplifier Configuration

 Although the BJT converts an input voltage signal to an output current signal, an (amplified) output voltage signal can be obtained by connecting a "load" resistor (with resistance R_L) at the output and allowing the controlled current to pass through it.

BJT as a Constant Current Source

Ideally, the collector current does not depend on the collector-to-emitter voltage. This property allows the BJT to behave as a constant current source when its base-to-emitter voltage is fixed.

(a)

Constraint on Load Resistance

• If $R_{\rm L}$ is too large, then $V_{\rm X}$ can drop to below ~0.8V so that the collector junction is forward biased. In this case, the BJT is no longer operating in the active mode, and so $I_C < \beta I_B$

 \rightarrow There exists a maximum tolerable load resistance.

EE105 Fall 2007

BJT I-V Characteristics

Active Mode Example Is= 5×10 A, R=100

EE105 Fall 2007

Lecture 4, Slide 20

Prof. Liu, UC Berkeley

BJT Large Signal Model

• A diode is placed between the base and emitter terminals, and a voltage-controlled current source is placed between the collector and emitter terminals.

BJT vs. Back-to-Back Diodes

• Figure (b) presents a wrong way of modeling the BJT.

