Declaration Page 1 of 1

You use the right-left rule, sort of like peeling an onion: you start with the name, and read to the right until you can't,
then you move left until you can't, and then move right again. Nothing like a perverse example to demonstrate the point:

const int- *(*£[5]) (int *, char []):

Using the right-left rule, you get:

e |ocate £, then move right, so £ is an array of 5...
e moving left, £ is an array of 5 pointers...
e moving right, £ is an array of 5 pointers to a function...

e continue to move right, £ is an array of 5 pointers to a function with two arguments (we can skip ahead and read
the function prototype later)...

e moving left, £ is an array of 5 pointers to function with two arguments that returns a pointer to...
e moving left, £ is an array of 5 pointers to function with two arguments that returns a pointer to int. . .

e moving left for the last time, £ is an array of 5 pointers to function with two arguments that returns a pointer to
const ant.

You can of course also use the right-left rule to write declarations. In the example, the type qualifier const is also used.
There are two type qualifiers: const (object is read only) or volatile (object may change in unexpected ways).

volatile is for decorating an object that may be changed by an asynchronous process - e.g., a global variable that is
updated by an interrupt handler. Marking such variables as volatile tells the compilers not to cache the accessed
values.

http://www.dragonsgate.net/pub/help/iccavr/5 A-Clntroduction2.html 14.09.2010



