/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "math.h" #include "string.h" #include "stdio.h" #include "stdlib.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define VDD 3.3 #define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFF75A8)) //Spannung Sensor bei 30°C #define TEMP130_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFF75CA)) //Spannung Sensor bei 130°C #define VDD_CALIB ((uint16_t) (300)) #define VDD_APPLI ((uint16_t) (330)) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; TIM_HandleTypeDef htim2; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ uint8_t wait = 0; // Zählvariabel uint16_t time = 0; uint8_t motorState = 0; //Motor-Zustand 0: STOPP 1:START uint16_t dma = 0; uint16_t counter = 0; //Timer2 uint16_t prevCounter = 0; //Timer2 int32_t temp = 0; // Innentemperatur in Grad Celsius uint16_t phaseAngle = 0; uint16_t prevPhaseAngle = 150; uint16_t delay = 0; float tempFloat = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_USART2_UART_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_USART2_UART_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim2); HAL_ADCEx_Calibration_Start(&hadc1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if(phaseAngle != prevPhaseAngle) // Phasenanschnitt nur bei Wertänderung neu beschreiben { delay = phaseAngle; //Wartezeit festlegen prevPhaseAngle = phaseAngle; } HAL_ADC_Start_DMA(&hadc1, (uint32_t*) &dma, 1); HAL_Delay(1); if(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4)) //Motor abschalten { HAL_GPIO_WritePin(GPIOC, PWM_Pin, GPIO_PIN_RESET ); // Motor ausschalten motorState = 0; //Motor ein } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1; RCC_OscInitStruct.PLL.PLLN = 8; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_SEQ_FIXED; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.LowPowerAutoPowerOff = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_79CYCLES_5; hadc1.Init.OversamplingMode = DISABLE; hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_16; sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 64-1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 100-1; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 9600; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 3, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(PWM_GPIO_Port, PWM_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : PWM_Pin */ GPIO_InitStruct.Pin = PWM_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLDOWN; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(PWM_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : SWITCH_Pin */ GPIO_InitStruct.Pin = SWITCH_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(SWITCH_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : DIP1_Pin DIP2_Pin */ GPIO_InitStruct.Pin = DIP1_Pin|DIP2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : Zero_Cross_Pin */ GPIO_InitStruct.Pin = Zero_Cross_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(Zero_Cross_GPIO_Port, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI2_3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI2_3_IRQn); HAL_NVIC_SetPriority(EXTI4_15_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI4_15_IRQn); } /* USER CODE BEGIN 4 */ /*Zeitpunkt Phasenanschnitt abhängig vom Poti einstellen*/ uint16_t poti(uint16_t dma) { if(dma < 250) time = 140; // ca. 20% -> 50V übrig else if(dma >= 250 && dma < 500) time = 130; else if(dma >= 500 && dma < 1000) time= 120; else if(dma >= 1000 && dma < 1250) time = 110; else if(dma >= 1250 && dma < 1500) time= 100; else if(dma >= 1500 && dma < 1750) time = 90; else if(dma >= 1750 && dma < 2000) time= 80; else if(dma >= 2000 && dma < 2250) time = 70; else if(dma >= 2250 && dma < 2500) time = 60; else if(dma >= 2500 && dma < 2750) time= 50; else if(dma >= 2750 && dma < 3000) time = 40; else if(dma >= 3000 && dma < 3250) time= 30; else if(dma >= 3250 && dma < 3500) time = 20; else time = 0; return time; } /*Temperatursensor des MC in °C auslesen*/ int32_t getTemp(uint16_t dma) { //Code aus Ref Manual temp = ((((uint32_t) dma) * VDD_APPLI) / VDD_CALIB) - ((int32_t) *TEMP30_CAL_ADDR); temp = temp * (int32_t) (130 - 30); temp = temp / (int32_t) (*TEMP130_CAL_ADDR - *TEMP30_CAL_ADDR); temp = temp + 30; return temp; } /*Callback Funktion Timer*/ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /*Interrupt Timer2 */ if(htim->Instance==TIM2) // wird alle 100 us aufgerufen { counter++; if(motorState == 1) //Motor eingeschalten { if(delay != 0) //Phase angeschnitten { if(wait == 1) //100us Impuls { HAL_GPIO_WritePin(GPIOC, PWM_Pin, GPIO_PIN_RESET ); // Phasenanschnitt ausschalten wait = 0; } //Berechnung Einschaltzeitpunkt Triac if(((counter - prevCounter) >= delay)) { HAL_GPIO_WritePin(GPIOC, PWM_Pin, GPIO_PIN_SET ); // Phasenanschnitt einschalten wait = 1; counter = 0; } } else //Triac volldurchgeschalten { if(HAL_GPIO_ReadPin(GPIOC, PWM_Pin) == 0) { HAL_GPIO_WritePin(GPIOC, PWM_Pin, GPIO_PIN_SET); } } } } } /*GPIO Interrupt Callback*/ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { /*Interrupt GPIO PIN 10*/ if(GPIO_Pin == GPIO_PIN_3) // Zero Cross { prevCounter = counter; } /*Interrupt GPIO PIN 0*/ if(GPIO_Pin == GPIO_PIN_4) //Schalter { motorState = 1; //Motor eingeschalten } } /*Callback Funktion ADC */ void HAL_ADC_ConvHalfCallback(ADC_HandleTypeDef* hadc) { __NOP(); } void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { phaseAngle = poti(dma); // Poti auslesen } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ HAL_GPIO_WritePin(GPIOC, PWM_Pin, GPIO_PIN_RESET ); // Phasenanschnitt ausschalten motorState = 0; // Motor aus //interrupts deaktivieren HAL_NVIC_SystemReset(); // neustart /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/