

ADVANCE INFORMATION SL441C ZERO VOLTAGE SWITCH

The SL441C is a symmetrical burst control integrated circuit in an 8 pin DIL package. When used with a triac, AC power may be regulated by varying the number of mains cycles applied to the load in a fixed timing period. The device is especially suited to room temperature control applications including panel heaters, fan heaters etc. Zero Voltage Switching has the advantage of minimising radio frequency interference.

SPECIAL FEATURES

- 1. Balanced zero voltage point crossing detector, spike filter and pulse generator for reliable triggering of the triac.
- 2. A period pulse generator and bistable which are arranged to provide symmetrical burst control and eliminate ½ wave firing. (EN50.006, BS5406, 1976)
- 3. A ramp generator whose output is used to modify an internal reference voltage which is then compared with the voltage appearing on the thermistor to form a proportional control system. The period of the ramp generator is defined externally and may be chosen to limit 'lamp flicker' in accordance with EN50.006/ BS5406, 1976.
- The comparison amplifier has inbuilt hysteresis to eliminate switching jitter and a spike filter/sampling circuit to provide high immunity to both spikes and coherent 50Hz/60Hz.
- 5. Thermistor malfunction may be sensed and power automatically removed.
- A supply voltage sensing circuit which inhibits firing pulses when the supply is inadequate to guarantee proper circuit operation. This eliminates stressing of the triac at switch-on.

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Voltages

Voltage on pin 8 V₈₋₁ Max. 12V Voltage on pin 4 V₄₋₁ Max. 10V

Currents

Supply current (pin 2) Peak value $\pm 1_2M$ 50mA. Non-repetitive peak current (tp \leqslant 250µs) $\pm 1_2SM$ 200mA

Output current (pin 5) Max. 5mA Short circuit protected.

Output current (pin 4) average value I₄(AV) Max 5mA Short circuit protected.

Temperature

Operating ambient temperature TAMB —10°C to +75°C
Storage temperature Tstg—30°C to +125°C

Fig. 2 Block schematic of SL441A

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

TAMB = 25°C

All voltages measured with respect to common (pin 1)

Characteristics	Value			
	Min.	Тур.	Max.	Units
Shunt regulating voltage pin 3 @ 16mA		14,7		V
Shunt regulating voltage pin 3 @ 16mA @ 75°C			16	V
Supply voltage trip level pin 3		12.2		V
Supply current (less I4AV, I5) (see Note 1)			7.5	mA
Regulated voltage pin 5	8.0	8.5	9.0	V
Regulated voltage temperature coefficient pin 5] —1		+1	mV/°C
Triac gate drive pin 4 (See Note 2)	1			
Open circuit ON voltage		8.5		V
Open circuit OFF voltage	4.00		0.1	V
Output current into 2V drain	100	130		mĄ
Output current into 4V drain	65	80		mĄ
Output current into short circuit Internal drain resistance		800	200	mA.
Control input pin 8		800		Ω
Bias current				
Hysteresis		20	'	μĄ
Sensor malfunction circuit operates at	150	200	250	mV
Input working voltage range	130	200	12	mV V
Internal reference voltage (Ramp start)	4.0	4.25	4.5	V
Internal reference voltage (Ramp start) (See Note 3) Internal reference voltage (Ramp finish)	1.0	4.35	4.5	v
Peak-to-peak amplitude of ramp	70	100	130	mV
Pin 6 output impedance (R6) (See Note 2)	21.5	27	32.5	kΩ
Maximum ripple voltage pin 3			1	VP-P

NOTES

- 1. The supply current is 0.45 × (RMS current fed into pin 2). Is is the current drained from pin 5 externally. Isov is the average triac gate current supplied each mains cycle.
- Triac firing pulse, it, Pulse width = 0.69 R6C_Dµs typical
 t_Γ Pulse finish = 1.09 R6C_Dµs minimum after zero voltage point R6 in kΩ, C_D in nF See Application circuit
 t_P Nominal (C_D = 2.7nF) = 50µs
 t_Γ Minimum (C_D = 2.7nF) = 63µs
 Ramp period = 0.85±0.15 × R_TC_Tsec. See Application circuit. The actual value of R_t must lie between 500kΩ and 3MΩ.

Fig. 3 Power dissipation

Fig. 4 Control characteristic of pin 8

Fig. 5 Pulse timing

APPLICATIONS

Electronic thermostat for room heater

The circuit in Fig. 6 has a sensitivity of nominally 100mV/°C. The width of the proportional control band is nominally 1.0°C and offers a good compromise between temperature stability and regulation performance. For potentiometer control characteristics see Figs. 7 and 8,

Fig. 6 Application circuit for proportional temperature control system.*

Fig. 7 Control characteristics of electronic room thermostat (mechanical calibration)

Fig. 8 Control characteristics of electronic room thermostat (electrical calibration)