AC-POWER ANALYZER D5155

(Precision Wattmeter D5155)

TEIL 1: GEBRAUCHSANLEITUNG
PART 2: OPERATING INSTRUCTIONS

Listen-Nr:: A4607 03013
A460703014
A460703020
A460703021

A. In order to avoid discharging the buffer battery for the C-MOS memory with consequent loss of calibrating data, it is recommended to operate the instrument with mains power switched on for at least five hours every 6 months, thus recharging the buffer battery.
B. For the attention of users

This measuring device should be used by qualified or trained personnel only and solely in correspondence with its technical data and in compliance with the safety regulations and precautions listed below.

For any given application, the legal and safety regulations pertaining thereto should be strictly complied with. This also applies when accessories made by other manufacturers are used.

If there is reason to believe that safe operation is no longer possible, switch off the instrument and secure it against unintentional reclosure. Impossibility of further safe operation must be assumed

- if the instrument is visibly damaged,
- if the instrument fails to operate,
- after extended storage under unfavorable conditions (e.g. storage outside the climatic declaration without adaptation to ambient climate etc.),
- after major transport stresses (e.g. drop from considérable height without visible external damage etc.)
C. Maintenance

Service work (e.g. readjustment) must only be performed by trained, competent personne1. Any repair or readjustment work must in no case impair safety by modifying any design parameters of the device; replacement parts must be the equivalent of the original parts replaced and reassembled in workmanlike manner to the original factory standard.
D. Short instructions to locate faults

This device was tested accurately by the manufacturer after solicitous production and pre-tests and was submitted to a BURN-IN-TEST before delivery. If notwithstanding all precautions malfunctions occur, please consult the following schedule to recognize possible operating and/or device defects or to locate malfunctions. If this procedure is negative, please contact the supplier, the next service office or the manufacturer.

Defect	Possible causes	Elimination of defect
instrument without	mains failure	check
function, all LED dark	fuse defective	change
	voltage selector wrong	adjust correctly
	power board defective	contact next
	instrument defective	service office
error message during power-on test	high electrical or	
	magnetic fields,	
	transient voltages,	see manual
	battery discharged	item 5.2.1
display of "NO OPTION" at $\mathrm{A}, \mathrm{V}, \mathrm{W} .$. (except Wh)	measurement with	switch instrument to
	missing channel board	RUN and perform
	RAM disturbed	measuring
	instrument defective	contact next service office
no new values	instrument is in HOLD	see manual
	high "N"	change or wait till "N" is reached
values incorrect	wrong ranges/overload wrong scale factors	select correctly
	measurement set-up	correct set-up
	faulty	
	signal unsuitable	
input is not stored after "ENTER"	address >30	
	scale factor 0	rectify
	$\mathrm{N}=0$	
instrument changes		
to HOLD position	HOLD after N selected	change to RUN
remote operation is not possible	wrong address,	
	terminator wrong or absent, remote control orders wrong, wrong or uncomplete order	rectify
LED ADDRESSED	"TALK ONLY" is active	switch off
alight permanently		de-address instrument

Defect
no data-output
at bus
asynchrounus
data-output
string too long error in controller
no print-out
in TALK ONLY
faulty calibration (CAL TEST FAIL)
no or partial instrument function
asymmetrical voltages with artifical starpoint
voltage measurement wrong (too high values up to 1.4 times)
power-on test is repeated
disturbances during measuring

Possible causes
Elimination of defect
instrument in HOLD
lack of request-command no trigger high N
high timing
time-out of controller too short
too many values in one variable
printer is not addressed no LISTEN ONLY switch
disturbances during calibration
instrument out of calibrating tolerance
loose connectors or print boards in instrument defective boards
star point floating against ground
high harmonics above 10 kHz
mains voltage breakdown
high transient voltages
in measuring circuit
wait till N is reached or requested new dataoutput
check timer
change or use time loops
request data in parts, use better computer
use plug-adaptor
"LISTEN ONLY" Cat.No. A 641602004
disconnect leads switch off high fields repeat calibration
contact service office rectify contact service office
exchange HI and LO symmetrize with low ohm resistors
use potential transformers to reduce harmonics
use better line stabilizer, uninterruptible power supply
use potential trans-
former, ground secondary winding

CONTENTS

Page
1

1. GENERAL
3
2. TECHNICAL DATA
6
3. DESCRIPTION OF CONTROLS
11
4. COMPUTATION OF MEASURED VALUES
1.2
5. START-UP
5.1 Items supplied 12
5.2 Start-up preparations 12
5.2.1 Initial state 13
5.3 Scale factor 14
5.4 Range 15
5.5 Display of measured values 16
5.5.1 Single-value display 16
5.5.2 Two-value display 17
5.5.3 Three-value display 18
5.5.4 Displaying three identical quantities from different channels 19
5.5.5 Display selection process 19
5.5.6 Averaging measured values 20
5.5.7 Analog recorder output 21
5.5.8 "Talk Only" operation 22
5.5.9 Option Function (electrical energy) 25
5.6 Special version for transformertest 27
5.7 Special version for motortest 29
6. FUNCTIONAL DESCRIPTION 31
6.1 Signal pre-processing 31
6.1.1 Input transformer 31
6.1.2 Overload and underload recognition 32
6.1.3 RMS conversion 32
6.1.4 Multiplier 32
6.1.5 Analog-digital conversion 33
6.1.6 Wh converter 33
6.2 CPU 34
6.3 Data output and input 35
6.3.1 Keyboard 35
6.3.2 Display 35
6.3.3 Interface 35
6.3.4 Analog outputs 36
6.4 Calibration 37
6.5 Power supply 39
7. CONNECTING DIAGRAMS 43
7.1 Single-phase AC system 43
7.2 Three-wire three-phase system 44
7.3 Four-wire three-phase system 48
8. REMOTE-CONTROL OPERATION - INTERFACE 55
8.1 Interface functions 55
8.2 Explanation of abbreviations used 55
8.3 Device address setting 61
8.4 Remote-control commands 61
8.5 Status byte 62
8.6 Additional error messages 63
8.7 Programming hints 64
8.8 Table for symbols on display and data output 67
9. SAMPLE PROGRAMS FOR DIFFERENT CONTROLLERS 68

1. GENERAL

The Precision Wattmeter is a highly accurate digital measuring instrument that handles $A C$ quantities in single-phase and polyphase systems under any type of load.

1. 3 x current
2. $3 x$ voltage
3. 3 x active power
4. 3 x electrical energy (optional)
are measured as true RMS values by RMS converters and subsequent A / D conversion are determined by the

Al1 9 (12) quantities are measured simultaneously.
The following quantities are computed from the above basic quantities:
5. 3 x apparent power
6. 3 x power factor (cap (lead), ind (1ag), +, -)
7. 3 x absolute value of impedance $|\mathrm{Z}|$
8. 3 x active resistance, Real (Z)
9. Total values of active power, apparent power, power factor, impedance, active resistance, electrical energy and mean of current and voltage
With current and voltage inputs mutually floating, the following applications appear relevant:

- measurements in up to three single-phase systems with summation (e.g., for tests of electrical plant)
- measurements in three-wire three phase systems under symmetric or asymmetric load
- measurements in four-wire three phase systems under symmetric or asymmetric load
- measurements of reactive power in three-phase systems by suitable connection of voltage inputs resulting in a 90° phase turn of voltage
The large total range permits utilization of the instrument for measurements ranging all the way from small quantities to super-high energy applications.

A11 input circuits may float mutually and with respect to earth/ground up to $U_{r m s}=660$ V. The built-in test and calibrating functions ensure the accuracy of measurement results and make for maximum long-term accuracy. Typing in the transmission factors for current and voltage results in correct digits and decimal shown on a 20-digit alphanumeric display. Data output is effected via an IEEE Standard 488 (IEC 625) Interface. Up to 32 simultaneously acquired measured values may be serially polled from the Bus. Any one of the measured quantities can be freely selected for transmission to the analog output (optionally up to 6 outputs). The instrument is controlled either from the clearly arranged foil-type keyboard with prompting on the display or from the built-in Interface. When the instrument is switched off, the set values remain available (C-MOS RAM), thus greatly facilitating operation.

Functional description

Each channel uses a current transformer and a voltage transformer for range matching and galvanic separation. Compensation of the transformers is electronic, and range selection is effected on the secondary side. The secondary winding is terminated by a precision resistor and produces a voltage drop of 2 volts at full level. These six voltages are converted into equivalent $D C$ voltages of 2 V by six RMS converters on the one hand and into DC voltages of 2 V equivalent to active power by means of three time-division converters on the other. These nine voltages are digitalized over the same period of 360 ms by 9 l6-bit analog-digital converters and passed to the microprocessor by the internal bus. If the optional energy-measurement facilities are included, the three output voltages of the time-division multipliers are digitalized by voltage-frequency converters, summed in a counter module and transmitted to the microprocessor every 500 ms . This method ensures uninterrupted measurement of energy. The microprocessor controls the entire measuring process, it performs the desired computations of measured values and passes the measured values to the Interface processor for data output, to the digital-analog converters for output of the desired analog values, and to the display processor for showing the measured values in the display area. The display processor also transmits the data typed in on the foil-type keyboard to the main processor.

During "Talk-Only" operation, data output is controlled by the internal timer. Underrange and overrange recognition is effected at the output of the current and voltage transformers by eight comparators per channel. During hold operation, the underrange or overrange message can be polled by the Interface 3 ms after applying a measuring value. On calling the internal calibration program, accurate triangular signals (constant currents at approx. 70 Hz) are applied to the transformer outputs, correcting values for each channel are determined and stored in the buffered C-MOS RAM.

Trigger facilities afforded by the Interface or the external trigger socket permit synchronization with the measuring or testing process or with other devices used in the measuring set-up. When measuring energy, triggering permits starting and stopping of the counter. By means of the Interface all instrument functions may be remote-controlled and measured data transferred.
2. TECHNICAL DATA
(for special version Transformertest see item 5.6) (for special version Motortest see item 5.7)

Ranges:
Current:
Overload
Voltage:
Overload:

0.1	0.2	0.5	A
1	2	5	A
10	20	50	A

60 A permanently; 100 A max. 5 s (in each current range). No fuse in circuit
$65 \mathrm{~V} \quad 130 \mathrm{~V} \quad 260 \mathrm{~V} \quad 520 \mathrm{~V} \quad 650 \mathrm{~V}$
800 V permanently; 1.4 kV max. 5 s (in each voltage range)

Accuracy range:
3 - 120% for both channels with overrange indication
Input impedance:
Current channel:
approx. 1 mOhm transformer with compensation
Voltage channe1: $660 \mathrm{kOhm} \pm 0.1 \%$ in all ranges
Crest factor:
max. 2, for full-scale value (for both channels)
Transmission factor: $10^{-6} \ldots 10^{6}$
Display range: $\quad 10^{-6} \ldots 10^{12}$ (automatic switching-over when measuring energy)

Resolution: for transmission factor 1 in the lowest range:
for current measurement 10 /uA
for voltage measurement 10 mV
for power measurement 1 mW
for energy measurement 1 mWh
Accuracy:
based on 1 year at $23{ }^{\circ} \mathrm{C}$, relative humidity $\leq 65 \%$
Current and voltage: \pm (0.1% of m.v. $+0.1 \%$ of set range) *) **)
Voltage $x \sqrt{3}$: corresponds to phase voltage in a symmetrical
voltage triangle
Active power: \quad for cos phi $=1 \pm 0.1 \%$ of range) *) **)
for cos phi $=0.1 \pm 0.5 \%$ of range) *)
range $=\mathrm{U}$. I . $\cos \mathrm{phi}$
power display is automativally switched to resolution $\times 10$
below 10 \% of nominal value
reset to normal resolution above 11 \% of nominal value
Apparent power: sum of errors of current and voltage
Electrical energy: error of active power $\pm 0.1 \%$
Power factor:
sum of errors of apparent and active power
*) Specifications are based on $45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$.
**) The error doubles for $15 \mathrm{~Hz} \ldots 45 \mathrm{~Hz}$ and $65 \mathrm{~Hz} \ldots 500 \mathrm{~Hz}$.
Error multiplied by five for 500 Hz ... 1000 Hz .

Absolute value of impedance:
Active resistance: sum of errors of 2 x current and active power
Efficiency: sum of errors of the individual powers

	voltage and active power
Long-term stability:	$\pm 0.02 \%$ of range for current, voltage and active power per year
Analog output:	-10..0... 10 V max. 2 mA , max. 6 outputs
	Assignment of the measured quantity to the analog output can be typed in from the keyboard. For adjusting the connected device, zero and $\pm 10 \mathrm{~V}$ can be applied to the output.
Additional error:	$\pm(0.25 \%$ of full-scale value $+0.03 \% / \mathrm{K})$
External voltage:	max. $\mathrm{U}_{\mathrm{rms}}=125 \mathrm{~V}$ but not exceeding $\mathrm{U}_{\mathrm{p}}=180 \mathrm{~V}$

General

Digital display: 20-digit fluorescent display (green) 5 x 7 dot matrix, character size $9 \times 6.3 \mathrm{~mm}$

Single-value display: 4 to 5 digits, max. 0 ... 30000 with sign, unit and channel assignment

Two-value display: 4 digits, max. $0 \ldots 9999$ with sign, unit and channel assignment, measured values freely selectable for display
Three-value display: 4 digits, max. $0 \ldots 9999$, display of $I_{r m s}, U_{r m s}$ and P (with sign) and channel assignment are fixed. Display of three identical freely selectable functions features sign and unit.
Measuring principle: Current and voltage: RMS value by analog computation method

Active power: time-division multiplication timed at approx. 70 kHz
Electrical energy: voltage to frequency conversion after time-division multiplication

Measuring period: $\quad 480 \mathrm{~ms}$ at 50 Hz mains frequency 400 ms at 60 Hz mains frequency
Relaxation period: max. 5 sec on change of range
Response time: 3 sec when applying a measured value 10 - 90% and a deviation of less than the specified accuracy

Averaging of measured
values: $\quad 1$ inear averaging over 1 ... 99999 measurements

3. DESCRIPTION OF CONTROLS

Front

Rear

Front:

1 Mains switch

Disconnects both poles of the instrument from the mains.

2 Range selection, scale factor and averaging
Pressing the "RANGE" key establishes the range-selection state for the previously selected channel.
The flashing CURSOR indicates the spot to be selected. Pressing the "RANGE" key again makes the CURSOR jump to the right. After pressing the desired digit the CURSOR will continue automatically to jump to the right. Once the range has been selected, it is stored and the original measuring program switched on automatically by pressing the "ENTER" key. Pressing the "SCALE" key sets up the scale-factor input state. The flashing CURSOR indicates the spot to be selected. The factor is adjusted as described above with the digit, "SCALE", "CLEAR" and "ENTER" keys.
The "." (decimal) and "ENTER" keys have multiple functions. (See DISPLAY, ANALOG OUT AND INTERFACE.)

The key " N " is used for averaging. The key "Option Input" is not used for the standard instrument

3 Channel selection keys
Pressing the "CH1", "CH2" or "CH3" key puts the data selected by keys (4) into the display area (7).
Pressing the "SUM" or "SUM/3" key displays the current sum or mean respectively (see item 4).
Pressing the "CHl/2/3" key displays the measured value selected by keys (4) simultaneously for all three channels.
On pressing the "HOLD/RUN" key the current measured values are stored and can be polled and displayed in any order.

4 Keys for selection of function
Pressing the desired function key displays the corresponding value with correct digits and decimal and together with sign, unit and function.
Pushing the "V" key twice activates or disactivates the display of voltage $x \sqrt{3}(V \Delta)$.
For the computed quantities "POWER FACTOR", "REAL (Z)", "|Z|" or " η " flashing 8888 is displayed if one of the measured quantities required for computation is less than 1% of full-scale value.

5 Overrange indication
If there is an overrange condition (more than 120% of full-scale value), the corresponding LED "OVERLOAD" is lit.

6 Indication of BUS functions
LED "REMOTE" is lit after the Controller has put the instrument into the remote-control state.

LED "ADDRESSED" is lit if the instrument is addressed by the Controller or is transmitting data.
LED "REQUEST SERVICE" is lit if the instrument is transmitting "SERVICE REQUEST".

7 Display area
20-digit green fluorescent display in 5×7 dot matrix, digit size $9 \times 6.3 \mathrm{~mm}$.

The display area shows the desired measured value (4 to 5 digits, max. 30000) with sign, unit and channel assignment as selected.

Two-value display features 4 digits with sign, unit and channel assignment. For displaying three identical functions (e.g., P_{1}, P_{2}, P_{3}) all functions can be freely selected but only the same function for all three channels. Mixed three-value display features 4 digits without units with channel assignment (in the order of current, voltage and active power). Besides the measured values, scale factors and ranges, the device address for BUS functions, individual program steps in TALK ONLY operation and the test functions are also displayed.

Rear:

8 Terminal for connection of protective wire For connecting a protective wire (protective class I) if no protective ground is available from the main supply.

9 Mains socket for connecting to the supp1y voltage

10 Mains-voltage selector $115 / 220 \mathrm{~V}$

11 Mains fuse DIN 41662 - T 0.63 for 220 V
DIN 41662 - T 1 A for 115 V

12 BUS connection
"D" Standard socket: IEEE Standard 488-24-pole (e.g., amphenol)
"D" Standard plug: IEC 625-25-pole (e.g., amphenol)

13 "Return to local"
Operation of this key removes the instrument from the remote-control state, e.g. for performing manual adjustments or measurements. Transmission of the next set of remote-control data resets the instrument in remote operation. The key can be disabled by transmitting "LLO" (local lock-out) at the start of a program.

14 External trigger input
Input: BNC socket, TTL level negative logic
By applying LOW potential to the BNC socket or short-circuiting, a measuring cycle can be started in the "HOLD" state. The triggering can be repeated after the measuring and output period has elapsed.

If the trigger input is maintained LOW for longer than a measuring period, the next measuring cycle is started automatically and concluded without regard to the trigger.

When energy is being measured, measurement starts with dropping the trigger to LOW (short circuit) and ends with raising the trigger to HIGH (open).

15 Analog Out
See section 5.5.6. Do not apply voltage to the socket!

16 Turn key switch for internal calibration. See section 6.4.

17 Space for optional plug-in unit for 5 additional analog outputs

18 Voltage inputs
$\max .650 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=660 \mathrm{k} 0 \mathrm{hm}$, max. $\mathrm{U}_{\mathrm{rms}}=660 \mathrm{~V}$ with respect to earth/ground
corresponds to terminal k (voltage input)

19 Current inputs
$\max .50 \mathrm{~A}, \mathrm{R}_{\mathrm{i}}=$ approx. $1 \mathrm{m0hm}, \max . \mathrm{U}_{\mathrm{rms}}=660 \mathrm{~V}$ with respect to earth/ground
corresponds to terminal k (current input) and marks the terminal closer to the source.

4. COMPUTATION OF MEASURED VALUES

Measured quantities

Currents:
Voltages:
Powers:
Electrical energy:

$$
\left.I_{1}, I_{2}, I_{3} ; \quad \quad I_{1}, I_{3}^{*}\right)
$$

Computed quantities:
Mean of currents $\Sigma / 3: \quad \bar{I}=\frac{I_{1}+I_{2}+I_{3}}{3}$

Mean of voltages $\Sigma / 3$:

$$
\bar{U}=\frac{U_{10}+U_{20}+U_{30}}{3}
$$

Power, three-phase
Apparent power (single-phase)

$$
\left.\Sigma P=P_{1}+P_{2}+P_{3} ; \Sigma P=P_{12}+P_{23}{ }^{*}\right)
$$

$S_{1}=U_{10} \cdot I_{1}, S_{2}=U_{20} \cdot I_{2}, S_{3}=U_{30} \cdot I_{3}$
Apparent power (three-phase)

$$
\left.U_{10}, U_{20}, U_{30} ; \quad U_{12}, U_{23}{ }^{\star}\right)
$$

Electrical energy
(three-phase)
Power factor

(three-phase)

Impedance
(single-phase)
Impedance
(three-phase)

Active resistance
(single-phase)
Active resistance
(three-phase)
$R_{e}\left(Z_{1}\right)=\frac{P_{1}}{I_{1}^{2}}, R_{e}\left(Z_{2}\right)=\frac{P_{2}}{I_{2}^{2}}, R_{e}\left(Z_{3}\right)=\frac{P_{3}}{I_{3}^{2}}$
$\Sigma: \lambda=\frac{P_{1}+P_{2}+P_{3}}{S_{1}+S_{2}+S_{3}}$
$\left|Z_{1}\right|=\frac{U_{10}}{I_{1}},\left|Z_{2}\right|=\frac{U_{20}}{I_{2}},\left|Z_{3}\right|=\frac{U_{30}}{I_{3}}$
$\Sigma:|Z|=\frac{1}{\frac{1}{\left|Z_{1}\right|}+\frac{1}{\left|Z_{2}\right|}+\frac{1}{\left|Z_{3}\right|}}$
$\Sigma: R_{e}(Z)=\frac{1}{\frac{1}{R_{e}\left(Z_{1}\right)}+\frac{1}{R_{e}\left(Z_{2}\right)}+\frac{1}{R_{e}\left(Z_{3}\right)}}$
$\Sigma W=\left(P_{1}+P_{2}+P_{3}\right) \cdot t$
$\left.\Sigma \mathrm{W}=\left(\mathrm{P}_{12}+\mathrm{P}_{23}\right) \cdot \mathrm{t}^{*}\right)$

$$
\Sigma \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}
$$

Power factor
(single-phase)

$$
\overline{\lambda_{1}}=\frac{P_{1}}{S_{1}}, \lambda_{2}=\frac{P_{2}}{S_{2}}, \lambda_{3}=\frac{P_{3}}{S_{3}}
$$

$\mathrm{U} x \sqrt{3}$
Efficiency

$$
\left(\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \Sigma \mathrm{U} / 3\right) \times 1.73205
$$

$$
\eta=\frac{P_{2}}{P_{1}+P_{3}}
$$

Averaged measured values:

$M W=\frac{\sum_{i=1} M W i}{N} \quad$ in "RUN" mode $\quad M W=\frac{\sum_{\equiv 1 \ldots n} M W i}{n}$ in "HOLD" mode for $n \leq N$

MWi ... measured value for I from 1 to N
N ... number of averaging processes
n ... current state of averaging process corresponds to cos phi for sinusoidal quantities
*) applies to two-wattmeter method
5. START-UP
5.1 Items supplied, accessories

Precision Wattmeter, with 1 analog output $-10 \ldots 0 \ldots+10 \mathrm{~V}$ inc1. Interface Accessories supplied with instrument:

1 mains connecting cable, 1.5 m long
2 spare fuses
6 pairs of measuring leads, 1 m long, with banana plugs and test prods
1 book of operating instructions
Available accessories:
Option energy measurement (Wh) can be built in later
Additional analog output (maximum 5)
Voltage output: $-10 \ldots 0 \ldots+10 \mathrm{~V}$ can be built in later
Precision current transformer
Primary 0.l... 150 A on terminals, up to 4000 A in plunger operation, secondary 5 A / 1 A respectively, cl. $0.1 / 0.2$ respectively, nominal frequency 50 Hz .
Detailed description see List PM $1704+6100$ PM 1E
Zero resistance $110 . .660 \mathrm{~V}, 660 \mathrm{kOhm}, \mathrm{c} 1.0 .1$, $45 \ldots 65 \mathrm{~Hz}$
19-inch plug-in set
5.2. Start-up preparations

After unpacking perform visual check for transport damage.
Caution: Before connecting up, check correct position of the mains voltage switch (10) and corresponding mains fuse (11) and correct if required:

For 220 V ... DIN 41162 T 0.63 A
For 115 V ... DIN 41162 T 1 A
The instrument can then be connected to a three-pin socket with the mains connecting cable supplied (9) and switched on with the mains switch (1). If no three-pin plug is available, suitable earth/ground connection must be made at the protective-wire terminal (8).
Caution: The instrument, being of protective class 1 , must always be operated with the case earthed/grounded.

Please note that in supply networks with high surges the built-in protective circuit of the switched power supply is triggered, switching of the mains. This will occur when main voltage upwards exceed the following level:

220 V position ... $\mathrm{U}_{\mathrm{p}}=353 \mathrm{~V}$
115 V position ... $\mathrm{U}_{\mathrm{p}}=183 \mathrm{~V}$
In this case place a line conditioner or a stabilizer in series. If major voltage reductions occur in the supply network, a buffered supply must be placed in front of the instrument in order to prevent it from switching itself off.

5.2.2 Initial state

After power-up an internal test cycle occurs. During this test all 20 matrix displays in the display area are lit serially. Subsequently all LEDs are tested. The internal test program tests the checksum of the program memories and of the memory holding the calibrating data.
If errors occur in program storage, the possibility of trapping depends on the type of error. If a faulty EPROM is ascertained, the message "ROM TEST K FAIL" (K = 1...4) appears. If the error cannot be located, the display or instrument function will show faulty behavior (e.g., periodic lamp test). If "RAM TEST FAILED" occurs on the display, two cases are possible:
a) set data are faulty (e.g. scale factor)
b) calibrating date are faulty

Remedy: First assume case a):
Caution: The measuring leads must be disconnected before the calibration process is started.
a) Switch off instrument. Press "rtl" key on rear panel, switch on instrument, keeping "rt1" key pressed until normal display appears (approx. 6 s). If a measured value occurs on the display, all required setting data are now rewritten into the RAM. All previously entered data are, however, lost, with automatic assumption of default values (e.g. scale factor 1 : 1 ; range $130 \mathrm{~V}, 1 \mathrm{~A}$).

If "RAM TEST FAILED" re-occurs on the display, proceed as under b):
b) Switch off instrument. Turn calibrating switch to "CAL", press "rtl" key, switch on instrument, keeping "rt1" key pressed until "CALIBRATING" appears on the display. The instrument is then recalibrating.

If the calibration process can be performed, the instrument should remain on for approx. 5 hours in order to charge the NiCd battery. If the calibrating process is not completed, "CAL TEST FAIL" occurs on the display. Treat this message as provided for in section 6.4.
After positive completion of the internal testing program, the last state valid before switching-off is automatically re-established. Similarly all previously programmed values (SCALE, RANGE, ADDR) remain valid.

If the instrument is in an input state, that state can be left again by pressing the "ENTER" key; if this is not possible, there has been faulty input (e.g., scale factor $000000 / 100,000 \mathrm{~V} / \mathrm{V}$; Addr. 38; Talk only; etc.). Measurement can only be continued after completion of input or correction of the error according to the appropriate section of the Operating Instructions.
Caution: If the display is not changing with the measured value then the instrument is in "Hold" condition or a high " N " is selected.

5.3 Scale factor

The scale factor takes into account the ratios of external current and voltage transformers. The (primary) measured value is shown in the display area with correct digits and decimal.

In order to set the factor, observe section 3.2. If a common factor is to be entered for all channels, press the "SUM, SUM/3" key after pressing the "SCALE" key and the appropriate function key. The value shown in the display (7) is valid for all channels after programming. If only one channel is to be changed, press the desired channel key instead of the "SUM, SUM/3" key. After changing and pressing the "ENTER" key the scale factor is changed only for the channel in question.

Caution:

The internal procedure program is designed for the "SCALE" function always to jump to the channel and function selected most recently. Therefore it may be necessary to press the desired channel key and the function key ("CH1", "A" or "V", etc.)

After completion of input, pressing the "ENTER" key performs storage and simultaneously shows the range of the selected channel and mode in the display area (7). If the scale factor remains on display, an input error has occurred, and storage can only be performed after correction. Quantities to be selected:

The input state may be left by pressing the "ANALOG OUT" key without changing the programmed value.

5.4 Range

After entering the scale factor, the valid range (second part of scale factor) is automatically selected and shown in the display area (7).

Another range can then be selected nonetheless. Selection by keys follows the procedure of section 3 (2).

Quantities to be selected

If the range is to be changed without changing the scale factor, this input mode can be selected directly by pressing the RANGE key. If no standard range is programmed, the lower standard range is always selected up to an excess $<20 \%$ or else the next higher standard range. For common or individual pre-selection of channels proceed as outlined in section 5.3. The selected range is stored on pressing the "ENTER" key. The input state may be left by pressing the "ANALOG OUT" key without changing the programed value.

5.5 Display of measured values

5.5.1 Single-value display

Display of a single measured value features 4 to 5 digits, max. 30000 with sign, unit and channel assignment.

Selection of the quantity to be measured is made by key (4) and channel selection with key (3) ($\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$).

Pressing the "SUM, SUM/3" key displays the mean value of the three individual quantities when current or voltage is measured. For measurements of power, power factor and energy the summation value is displayed, for resistance measurement the parallel replacement resistance (see section 4). Pressing the "CH1/2/3" key displays the three measured values of the selected function (see section 5.5.4).

5.5.2 Two-value display

The display features 4 digits max. 9999 with sign, unit and channel number.
Pressing the "." key moves from single-value to two-value display.
The latest valid value of the single-value display is automatically written into the left-hand half. The right-hand half shows the function from the latest two-value representation. If another function is to be shown in the right-hand half, press key " 2 " before selecting the function. Press key "1" for a change in the left-hand half. Within a channel all 8 measured values can be displayed on the right-hand or left-hand side as desired. The digit to the right of the colon shows the channel number. If summation values are to be displayed, the " Σ " symbol is shown to the right of the colon. Depending on the measured quantity, the values displayed correspond to the mean value (current, voltage) or to the sum of all three channels (power).

Flashing 8888 is displayed if no measured value can be computed. The symbol "-" occurs if that option is not incorporated.
5.5.3 Three-value display (current, voltage and power of a given channel)

The display features 4 digits max. 9999, sign of the active power and channel number. Multiplication factor and unit are not displayed. Pressing "." again in the two-value display mode selects three-value display. The three measured values of a given channel are displayed in the order of current, voltage and active power.
The digit to the right of the colon indicates the channel number. If summation values are to be displayed, the symbol " \sum " is displayed to the right of the colon. The values displayed correspond to the mean value for current and voltage and to the sum of all three channels for power.

The symbol "-" occurs if that option is not incorporated.

5.5.4 Displaying three identical quantities from different channels

Pressing the "CH1/2/3" key and the desired quantity key puts all three channels in the display simultaneously. The display features 4 digits max. 9999 with sign and unit.

Flashing 8888 is displayed if no measured value can be computed. The symbol "-" occurs if that option is not incorporated.

In the power mode, signs are displayed.

5.5.5 Display selection process

The display mode for the measured values is selected with the "." key. Each time the key is pressed, the next mode is selected (scrolling): The process depends on the current state of the display, e.g.:

1. Single-value display
2. Two-value display
3. Three-value display of mixed quantities
4. $=1$. Single-value display
5. Three-value display of identical quantities
press CH1, CH2 or CH3
press "." once
press "." once (or twice from state l)
press "." once (or twice from state 2)
press key "CH1/2/3" from any state (1, 2 or 3)

5.5.6 Averaging measured values

After pressing " N ", the display status is attained for the current number of averaging processes.

This display state may be left again by pressing the "ENTER" key.

Pressing the " N " key twice attains the input state for the number of measurements over which averaging is to take place.

```
N = XXXXX, RUN after N
    L| selectable (HOLD, RUN) by "."
    number of averaging process (0 ... 9)
```

Input range $\mathrm{N}=00001$ to 99999

In the input state of " N " it is further possible to select whether the instrument is to pass into the "HOLD" or "RUN" state on completion of averaging. Selection is made by pressing the "." key. If "HOLD" is selected, the instrument passes automatically in "HOLD" condition. On completion of input, pressing the "ENTER" key causes storage and start of the averaging process. If "HOLD" was selected, the current average value is displayed during the averaging process - in case of "RUN" the last value measured before averaging is displayed during the averaging process. Current measuring values are not displayed during averaging for $N>1$. After the number of averaging processes has been completed, the final result is displayed; in the RUN mode a new averaging process is started.

5.5.7 Analog recorder output

Standard accessories include a recorder output $-10 \ldots 0 \ldots+10$ with a maximum permissible load of 2 mA ; as an option up to 6 outputs are available.

The signal permanently applied to socket (15) "ANALOG OUT" is assigned and scaled by programming from the keyboard (2). The full-scale value selected from the keyboard (2) as visible in the display area (7) corresponds to 10 V. Pressing key (4) "ANALOG OUT" prepares the instrument for selection of the full-scale value. This presupposes that the device is in any of the states of measured-value display. Quantities to be selected:

```
AK: XXXEMM f.s. CH1
function (A,V,W,VA,PF,Wh,\Omega,\Omegaa,%)
multiplier (/u,m,k,M,G,T)
full-scale value (0-9, .)
number of analog output (1-6)
```

The flashing CURSOR indicates the possibilities of modification. The measured quantity and the number of the desired channel are entered directly by keys (4) and (3) respectively. The multiplier is selected by pressing the "." key when the cursor is located in front of the unit. The "ANALOG OUT" and "CLEAR" keys move the CURSOR to the right of left respectively each time they are pressed. The cursor scrolls, i.e. on leaving the display area after a key is pressed it reappears at the other end. After the desired value has been set (by the CURSOR and pressing the desired key), it is stored in memory by the "ENTER" key. The new measured value is automatically applied to the output socket in question, and the display value valid before the "ANALOG OUTPUT" call reappears in the display area.

An adjustment aid is provided for adjusting the recorder to the full-scale value of $\pm 10 \mathrm{~V}$ and to zero. The desired channel is selected in the "ANALOG OUT" state. When the cursor is placed on the channel number, the channel output selected can be switched to zero by pressing the "." key. The display area shows "AK:TEST ZERO". Pressing "." again switches over to positive full-scale value, and "AK-TEST + f.s." is displayed. Pressing "." a third time switches to negative full-scale value, the display shows "AK-TEST f.s." ($K=1 \ldots 6$). Pressing the "ENTER" key again displays the previously selected measured value. Proceed in the same way for programming channels 2 to 6. If an analog output is selected but not incorporated, "AK:NO OPTION" is shown in the display area. This state is left by pressing the "CLEAR" key.

5.5.8 "TALK ONLY" Operation (IEC BUS)

Data may be printed at pre-selectable intervals by a printer with bus capabilities using the data line.

Each measured value is output as 15 bytes and terminated with $C R$ (carriage return) and LF (1ine feed).

Printer settings differ from model to model. If there is a timer, switch it off (e.g., $P 4995$ minimum time). If auto line-feed is provided, switch it off. Connect printer with interface cable and address as listener ("Listen only" switch on).

If the printer used does not support auto-addressing as listener, it can be addressed with the help of an adapter plug by pressing the key. This adapter plug is available among accessories (pre-set for printer address 4).

Type 57 Microribagn connector

Pressing the "ENTER" and "." keys passes from the state of measured-value display into the "Talk only" input state.

Quantities to be selected:

```
T.ONLY ZZ: MM KK & CR/LF selectable with "CLEAR" key
channe1s (CH1, CH2, CH3, \Sigma, \Sigma/3)
function(A,V,V ,W,VA,PF,Wh,\Omega,\Omega,
1ine number on printer (01-38)
```

Pressing the appropriate function key (A, V, W, ...) selects the quantity desired for printout. Pushing the "V" key twice activates or disactivates the output of voltage x V3 (VA). Instead of the output of a measured value it is possible to select a BLANK by means of the "." key, or, by pressing this key again, the end of input (end of printing) "END". With the "CLEAR" key it is possible to set or suppress an end-of-1ine (CR/LF) for each input after output of the measured value. BLANK together with CR/LF signifies a blank line - SPACE without CR/LF results in spaces for the width of one measured value. This permits output of measured values in tabular form on a page printer. Pressing the "ENTER" key stores the program step and attains the next input position.

T.ONLY ZZ: BLANK | blank ENTER | |
| :--- | :--- |
| | blank space \quad blank line |

T.ONLY TIMER XXXXX s

Time interval (digits 0-9)
input range: 1 ... 99999
The flashing CURSOR indicates the input position. After each input the CURSOR jumps to the next position to the right. The CLEAR key sets the CURSOR to the next position to the left.

Caution:
The time interval entered must be adapted to the printer speed and to the number of measured values and blank lines to be printed. An interval that has been chosen too short cannot be complied with.

Pressing the "ENTER" key stores the value as entered and simultaneously starts the interval.

In order to change the interval press the following keys:
"ENTER" - enter line number of the last line (END) or line 38 and terminate with "ENTER", or keep pressing "ENTER" until the last line with "END" appears in the display; "ENTER" (TIMER) - "ENTER!" (display state, simultaneously starting the time interval).

After the programmed time interval has elapsed, all current preselected measured values are output to the printer. If the instrument is in the "HOLD" state, nor measured value is output, or output of the last block is concluded. If the state is shifted from "RUN" to "HOLD" during the pause interval, an additional printout of the last current values is caused. The time raster selected is not influenced by the change from "RUN" to "HOLD". This permits commanding an individual printout after a long time interval (say 99999 s) has been selected.

Caution:

Press the "CLEAR" key in the address display mode to prepare the deletion of the "TALK ONLY" operation. By switching off the mains or transmission of "IFC" through BUS the "TALK-ONLY" operation is actually cancelled.

In "TALK ONLY" mode the error message for energy measurement appears in byte 4 of the print-out (overrange-message) according to the following table:

X ... actual valid error message

Outputindication:

```
I ... current
U ... voltage
V ... voltage x \sqrt{}{3}
P ... active power
VA ... apparent power
FC ... power factor lead
FI ... power factor lag
WH ... energy
Z ... active resistance
X ... impedance
PRO... efficiency
```

Special version for transformertest:
UM ... rectified mean $x 1.11$
VM ... rectified mean $x 1.11 \times \sqrt{3}$.
FF ... formfactor
PC ... corrected power

5.5.9 Option Function - electrical energy measurement

Before beginning to measure, make sure (in the display mode) that the counter has been erased, since the counter state preserves even if the instrument has been switched off. The memory may be cleared in the HOLD state by pressing the "CLEAR" key.

This action erases whatever values happen to be in the display. This means that in case of single-value display ($\mathrm{CH} 1, \mathrm{CH} 2$ or CH 3) only the channel that happens to be selected is cleared. In case of two-value display the value in the left-hand half is cleared, and in case of three-value display all three. The display of the summation value is corrected after the next run. In display of the summation value all three channels and the sum value are cleared. After clearing the flashing sign " < " is displayed, which is deleted in "RUN" mode and value exceeding $0,1 \mathrm{nW}$.

Pressing the "RUN" key starts energy measurement, which can be stopped again by pressing "HOLD". If "RUN" is started again without erasing the old values, the new measured values are added.

The external trigger input corresponds to pressing the "RUN/HOLD" key and effects starting and stopping of the energy measurement within 100 /us ... 20 ms depending on state of the processor.

In the single value display the following error message is displayed between value and unit:

- 600.24 mWh P F C O CHI

These messages are stored during the measuring time. They are used for examination of the measured value and cleared with the value.

Reserved for personal remarks

5.6 Special version for transformertest

This compact measuring system is particularly suitable for testing large transformers. Besides the RMS values the rectified mean value of the three voltages are measured and their average value as well as the form factors are computed. In relation to the standard version the accuracy of active power measurements at low power factors has been improved. Measurements of the rectified mean value permits correction of unload power loss, while the improved accuracy is required for measurement of short-circuit losses. Simultaneous acquiring of all values ensures maximum accuracy of the measured and computed values.

For improved accuracy, current ranges have been limited to 1-2-5 A. Energy measurement is not possible.
5.6.1 Technical Data as for standard version, but in addition:

Rectified mean

shown on Display and output:
$|\bar{U}| \times 1.11 \quad 1.11 \ldots$ formfactor for sinusoidal signals that means $U_{R M S}$ for sinusoidal voltages
Limits of error: $\quad \pm(0.1 \%$ of m.v. $+0.1 \%$ of range $)$
Formfactor: $\quad F=\frac{U_{r m s}}{\left\lvert\, \frac{U}{}\right.}$
$\mathrm{F}_{10} \mathrm{~F}_{20} \mathrm{~F}_{30} \quad \Sigma: \mathrm{F}=\frac{\mathrm{U}_{10}+\mathrm{U}_{20}+\mathrm{U}_{30}}{\left.\left|\widetilde{\mathrm{U}_{10}}\right|+\mid \widetilde{\mathrm{U}_{20}}\right\}+\left|\overline{\mathrm{U}_{30}}\right|}$
Limits of error: Sum of errors of $U_{r m s}$ and $\mid \bar{U} i$
Active power: Switchover of power display to $x 10$ if display $<10 \%$ of range
Limits of error: $\quad \pm(0.08 \%$ of m.v. $+0.015 \%$ of range)
applies to all power factors within the frequency range of $45 \ldots 65 \mathrm{~Hz}$ range $=\mathrm{U}_{\mathrm{N}} \cdot \mathrm{I}_{\mathrm{N}}$
Corrected active power:
$P C=P /\left(0.5+0.5 \cdot(1.1107 / F)^{2}\right)$
$\Sigma P C=P C_{1}+P C_{2}+P C_{3}$
This formula for the correction of the unload-
losses for transformer with oriented steel
corresponds to the most national and inter-
national regulations for transformer test.
IEC Publ. 76-1 1976
VDE 0532 part $1 / 11.71$
ANSI/IEEE C57.12
ÖVE M20 part 1

5.6.2 Functional description

The instrument has three average rectifiers (rectified mean) and three A/Dconverter instead of the energy option. On display or output value is multiplied with 1.11 (FF for sinus). The three additional values are calibrated with the same triangular signal as the other nine values ($3 \mathrm{x} U, 3 \mathrm{x}, \mathrm{I}, 3 \mathrm{x}$). Range- and scalefactor for the average rectifier are the same as for the "RMS" converters and may be selected only together.
From the 12 measured values all other values are calculated.
5.6.3 Operation over keyboard (front panel)

Selection of display modes, enter modes and measuring functions is operated as in the standard model.

Some keys have two functions:
V key: Selects the functions U or U delta and switches the display between V and V delta ($=U \times \sqrt{3}$) if one of these functions is active. The multiplication is only made for the display and "TALK ONLY" mode. At V delta the rectified mean voltage is also multiplied with $\sqrt{3}$.
OPTION FUNCTION key: Selects the function rectified mean x 1.11 or rectified mean delta $\times 1.11$ and switches the display between V and V delta ($=\mathrm{V} x \sqrt{3}$) if one of these functions is active. The multiplication is only made for the display and "TALK ONLY" mode. At V delta the RMS voltage is also multiplied with $\sqrt{3}$.
P key: Selects the function P or P corr. and switches the display between P and PC if one of these functions is active.
POWER FACTOR key: Selects the function PF and FF and switches the display between PF and FF if one of these functions is active.
TALK ONLY: The functions U, U delta, V, V delta may be selected independent. U delta and V delta are not interlocked.
ANALOG OUT: The functions U delta and V delta are not selectable.

5.6.4 Remote control commands

Remote programming of RANGE, SCALE, ANALOG OUT, RUN/HOLD, N and SRQ are same as in the standard model. Range- and scalefactors are same for RMS and Rectified mean. The new functions are programmed and indicated over BUS as following:
Function (control command) Outputindication bUS DISPLAY

U	RMS	.. U	V
V	rectified mean $\times 1.11$	UM	$\overline{\mathrm{V}}$, Vrmean
W	form factor	FF	FF
Q	corrected power	PC	Wc, wcorr
	US (TALK ONLY)		V_{4}
	VA (TALK ONLY)	VM	\bar{V}_{Δ}, VA rmea

6. FUNCTIONAL DESCRIPTION

6.1 Signa1 pre-processing
(acquisition and processing of measured quantities up to conversion into digital quantities)

Each input quantity is standardized by a transformer (1 x current, 1 x voltage per channel) at the secondary and subsequently converted into proportional DC voltages in an RMS converter (current, voltage) an in a multiplier (power). These 9 DC quantities are converted into digital signals in 9 separate analog-digital converters. The voltages proportional to active power are each passed to a voltage-frequency converter, which converts them into a proportional frequency.

6.1.1 Input transformer

Current transformer

Principle:

The flux produced by $I_{1} \times N_{1}$ is compensated for by $I_{2} x N_{2}$, so that the voltage across the sense winding becomes zero.
$I_{1} \cdot N_{1}=I_{2} \cdot N_{2}$; therefore $I_{2}=\frac{N_{1}}{N_{2}} \cdot I_{1}$ proportional to the input current.
The current I_{2} produces the standardized voltage drop across R for further processing.
The primary winding consists of a single turn (copper tape of approx. $16 \mathrm{~mm}^{2}$ cross-section). Range selection is effected on the secondary side, by means of $1-2-5$ steps at the secondary winding ($N 2$) and $0.1-1-10$ steps in the following amplification. This yields 9 ranges from 0.1 to 50 A . At the output a standardized voltage of U_{I} ACrms $=2 \mathrm{~V}$ is available.

Voltage transformer

The voltage transformer uses the same principle as the current transformer. In this case, however, the input voltage is converted by a series resistor (660 kOhm) into a current passing through the primary winding (many turns). Ranges are again selected at the secondary by means of secondary taps (5 ranges from 65 V to 650 V). At the output a standardized voltage of U_{U} ACrms $=2 \mathrm{~V}$ is available.

6.1.2 Overload and underload recognition

The voltages $U_{I} A C$ and $U_{U} A C$ are passed to 4 comparators each, comparing these voltages with 2 thresholds each (one for overload, one for underload), in each case once for the positive and once for the negative half-wave. The outputs of these comparators are read by the CPU at certain intervals. The overload threshold is at 120%, the underload threshold at 40% of nominal load.

6.1.3 RMS conversion

The voltage $U_{I} A C$ and $U_{U} A C$ are converted into a $D C$ voltage equivalent to the RMS value by an RMS converter each, using the formula

$$
U_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} U_{(t)}^{2} d t}
$$

At the output a DC voltage of 2 V proportional to the measured quantity is available ($U_{I} D_{C} ; U_{U D C}$).

6.1.4 Multiplier

The quantities $U_{I} A C$ and $U_{U} A C$ are multiplied by the time-division method and converted into a DC voltage proportional to active power. At the output of the multiplier a $D C$ voltage of approx. $2 V$ is available ($U_{P} D_{D C}$).

Principle:
By this method the rectangular signal of a multivibrator (frequency for this purpose approx. 70 kHz) is subjected to a change in keying ratio by either of the quantities to be multiplied (in this case $U_{I} A C$). The second input signal (in this case $U_{U} A C$) changes the amplitude of the rectangular signal. If the integral (mean) of the resulting signal is taken, the product of the two signals results, weighted by their phase shift. The output signal (DC voltage) is therefore proportional to the active power of the input signals.

6.1.5 Analog-digital conversion

The 9 DC voltages (proportional to input current, voltage and active power in each channel) are digitalized in 9 separate $A D C s$. The ADCs work by the integrating charge-compensation method. The integration period is 360 ms , followed by an auto-zero phase of 120 ms , so that total conversion time is 480 ms .

The oscillator for controlling the conversion is synchronized with the mains frequency in the range from 47 Hz to 63 Hz by means of a synchronizing circuit (PLL ... phase-locked loop), thus affording optimum suppression of any superimposed disturbances from the mains on the $A D C$ input. The periods quoted above refer to a mains frequency of 50 Hz .

6.1.6 Wh converter

The three voltages proportional to active power U_{P} DC in channels 1,2 , 3 are converted into a frequency (up to 100 kHz) by a voltage-frequency converter). These pulses are summed on the CPU panel by one counter each.

Principle:

The input voltage is integrated down by the integrator until its output attains a value of zero. At that time the comparator starts a monostable multivibrator, whose output switches on a constant-current source at the integrator input for a precisely defined period. Then down-integration by the input voltage is resumed. The frequency of switching on the constantcurrent source corresponds to the input voltage, i.e., the output frequency of the monostable flip-flop is proportional to the input voltage.

6.2 CPU

The task of the CPU is controlling the whole measuring process, to read the measured data into the $A D C$ and to multiply them by the appropriate factors (range, scale, calibrating factor), to determine the quantities to be computed therefrom and to format them for the various output modes. It must also perform control of the IEC bus and the handshake with the display processor.

All data are stored in a CMOS RAM which maintains its data even though the instrument may be switched off, using a NiCd storage battery.

Two circuits monitoring the program and the supply voltage make for maximum system reliability.
6.3 Data output and input

6.3.1 Keyboard

The keyboard is of the completely welded foil type. When a key is pressed, the two contact strips of the spaced foils touch and close a contact.
The display processor (8039) inquires the position of the depressed key and supplies an appropriate code to the main processor (280).

6.3.2 Display

The display unit consists of the display tube and its control (processor 8039 and control components.)

The display tube is a fluorescent vacum tube with 20 digits comprising a 5×7 dot matrix each. The filament of the tube is simultaneously the cathode, the grid behind it is used for selecting the controlled spot (multiplex method). The 5×7 points of the matrix are formed by 35 anodes coated with a fluorescent substance, which makes them glow green when a current flows. The plate voltage is approx. 40 V ; it is produced by a separate $D C / D C$ converter.
The data for the display and for the 11 LEDs in the front panel are transmitted by the main processor ($Z 80$) to the display processor via the data bus and additional handshake lines.

6.3.3 Interface

Transfer of data to the IEC bus and from the IEC bus to the main processor is effected by a separate integrated component specially designed for this purpose with two following bus drivers.
This integrated component also reads the state of switches at the rear of the Interface (rtl switch, CAL/RUN switch, trigger socket).
If the Talk Only mode is switched on, the instrument is addressed and transmits the requested data to a connected printer via the Interface. Special hardware for this purpose is not required.

6.3.4 Analog outputs

Up to 6 digital-analog converters are connected to the internal data bus via intermediate memory.

Data are inscribed, already correctly formatted, into the appropriate DAC by the CPU after each $A D C$ conversion (480 ms). The output circuit of the DAC supplies $\pm 10 \mathrm{~V}$ for maximum possible signal.

Each output is protected against the application of an external voltage up to $\mathrm{U}_{\mathrm{rms}}=125 \mathrm{~V}$ by means of a PTC and protective power diodes.

6.4 Calibration

The accurate voltage of a heated and thermostat-controlled reference diode is converted into a calibrated triangular signal (approx. 70 Hz). This signal is further converted into a current for calibration of the voltage circuit and another current for calibration of the current branch and subsequently fed into the reference resistors R at the output of the compensated transformers.

These reference values are measured by the $A D C$, time-division converters and Wh converters, compared with expected values and deviations stored in C-MOS RAM.

Before performing a calibration the warm-up period of the instrument should have expired.

For internal calibration all signals should be disconnected at the rear and the turnkey switch moved to the "CAL" position. The calibration process takes approx. 3 min . On completion of the internal calibration process TURN KEY TO RUN
is displayed in the display area (7). After turning the turnkey switch, the instrument is ready to measure with the new reference values.

At the end of a calibration process the new calibration data are checked for acceptability. If a hardware error were to render one value or several values invalid, the corresponding old values are not overwritten, and an appropriate message appears in the display:

CAL TEST FAIL

Error type code:
0 ... no error
1 ... error current
2 ... error voltage (also in combination,
4 ... error power e.g. 6 ... error voltage + power)
8 ... error energy
Above "9" hexadecimal digits are displayed:

10	\ldots	A	13	\ldots
11	\ldots	B	14	\ldots
12	\ldots	C	15	\ldots

The error message appears if a calibration value deviates by more than 1% from the old value.

In this form of calibration, deviations from the expected value after the compensated input transformers are ascertained by feeding-in exact reference values and subsequently stored. These deviations are taken into account when measured values are computed.
Matching of the compensated transformers is done in the plant and may be considered sufficiently stable for physical reasons, unless the instrument becomes defective.

The deviation of individual channels can be ascertained by connecting the three currents paths in series and the voltage paths in parallel, applying measured quantities at the approximate level of the nominal ranges and comparison of displayed values for each channel. Since a defect or change with identical error effects in all three channels is extremely improbable, this test in conjunction with the calibrating function will ensure instrument accuracy.

```
6.5 Voltage supply
```


The switching-networks section delivers 5 V for the instrument, stabilized for supplying the digital assemblies (permissible load approx. 3.5 A) and $\pm 18 \mathrm{~V}$ unstabilized for the supply of analog assemblies (permissible load approx. 600 mA).

The voltage required in each case is produced on the appropriate module from $\pm 18 \mathrm{~V}$ by following fixed-voltage regulators.

Reserved for personal remarks

Reserved for personal remarks
7. CONNECTING DIAGRAMS

The reference arrow indicates the terminal closer to the source.
7.1 Single phase AC system

Single-channel display Keys: CH3 (or CH2 or CH1)
Display corresponds to: U, I, P, S, 入, $|\mathrm{Z}|, \operatorname{Re}(Z), W$
Connection to all three channels permits measurement of three consumers and measurement of mean or total value.

Measurement of reactive power is only possible with an additional 90 o phase-turning component.

7.2 Three-wire three-phase system

Active power single phase, symmetric load

Display: single channel
Display corresponds to
Display x 3 for
Display / 3 for

Keys CH 3 (or CH 2 or CH 1)
$\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{3}, \boldsymbol{\lambda}_{3}$
P, S, W
1Z1, $\operatorname{Re}(Z)$

Active power two-phase, asymmetric load (two-wattmeter method)

Display: two channels
Keys $\mathrm{CHI} / 2 / 3$
three channels for U

Display corresponds to:
$\mathrm{U}_{13}, \mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{I}_{1}, \mathrm{I}_{3}, \Sigma \mathrm{Z}=\mathrm{P}_{12}+\mathrm{P}_{23}$
$\Sigma W=W_{12}+W_{23}$
Display erroneous for $\lambda,|z|, \operatorname{Re}(z)$
SUM, SUM/3 for (U, P, W) only, because only $2 / 3$ will be displayed for mean value of I (SUM/3)

Active power two-phase, asymmetric load In order to avoid the drawback of the two-wattmeter method (values partially incorrect owing to the 30° phase rotation of the voltage), the following circuitry will work in three-phase systems:

The current $I_{2}=-\left(I_{1}+I_{3}\right)$ is summed by summing over the two current transformers and pole-changing. With this circuitry all values are displayed correctly as for the three-wattmeter method.

Display three channels Keys CH1/2/3
Display corresponds to $\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$

$$
\lambda 1, \lambda 2, \lambda 3,\left|Z_{1}\right|,\left|Z_{2}\right|,\left|z_{3}\right|, \operatorname{Re}\left(z_{1}\right), \operatorname{Re}\left(z_{2}\right), \operatorname{Re}\left(z_{3}\right), W_{1}, W_{2}, W_{3}
$$

Key SUM, SUM/3
Display corresponds to $\bar{U}, \bar{I}, \Sigma \mathrm{P}, \Sigma \mathrm{S}, \Sigma \lambda, \Sigma|Z|, \Sigma \operatorname{Re}(Z), \Sigma \mathrm{K}$

Active power three phases, asymmetric load

Display three channels
Keys: CHl/2/3
Display corresponds to $\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$,

$$
\begin{aligned}
& S_{1}, S_{2}, s_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3},\left|z_{1}\right|,\left|z_{2} i,\right| z_{3} l \\
& \operatorname{Re}\left(z_{1}\right), \operatorname{Re}\left(z_{2}\right), \operatorname{Re}\left(z_{3}\right), W_{1}, W_{2}, W_{3}
\end{aligned}
$$

Key SUM, SUM/3
Display corresponds to $\bar{U}, \vec{I}, \Sigma p, \Sigma s, \Sigma \lambda, \sum|Z|, \sum \operatorname{Re}(Z), \Sigma W$

Reactive power single-phase, symmetric load

Caution: Because of artificial phase turning, power factor and active resistance are not computed correctly when measuring reactive power

Display single channel
Display corresponds to: Display/ $\sqrt{3}$ for:

Keys: CH3 (or CH 2 or CH 1)

$$
\begin{aligned}
& \mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}, \mathrm{I}_{3} \\
& \mathrm{Q}, \text { reactive energy }
\end{aligned}
$$

Reactive power two phases, asymmetric load

Display two channels
Display corresponds to:
Display $x \sqrt{3}$ for :

Keys $\mathrm{CH} 1 / \mathrm{CH} 2 / \mathrm{CH} 3$
$\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{1}, \mathrm{I}_{2}$
$\Sigma Q=Q_{1}+Q_{2}$, sum of reactive energy

Reactive power three phases, asymmetric load

Display: three channels
Display corresponds to: Display $/ \sqrt{3}$ for

Key CH1/2/3, SUM, SUM/3
$\mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{U}, \mathrm{I}$
$\sum Q$, sum of reactive energy

7.3 Four-wire three phase system

Active power single phase, symmetric load

Display single channel
Display correct for
Display x3 for
Display / 3 for

Keys CH 3 (or CH 2 or CH 1)
$\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{3}, \lambda_{3}$
P, S, W
1Z\} $\operatorname{Re}(Z)$

Active power three phases, asymmetric load

Display three channels
Keys CHI/2/3
Display corresponds to $U_{10}, U_{20}, U_{30}, I_{1}, I_{2}, I_{3}, P_{1}, P_{2}, P_{3}, S_{1}, S_{2}, S_{3}$,

$$
\lambda_{1}, \lambda_{2}, \lambda_{3},\left|{ }_{1}\right|,\left|Z_{2}\right|,\left|z_{3}\right|, \operatorname{Re}\left(z_{1}\right), \operatorname{Re}\left(z_{2}\right), \operatorname{Re}\left(z_{3}\right), W_{1}, W_{2}, W_{3}
$$

Key SUM, SUM/3
Display corresponds to

Reactive power three phases, asymmetric load

> Display three channels
> Display corresponds to:
> Display $/ \sqrt{3}$ for

Keys CH1/2/3, SUM/SUM/3

$$
\begin{aligned}
& \mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{U}, \mathrm{I} \\
& \Sigma \mathrm{Q}_{1}, \text { sum of reactive energy }
\end{aligned}
$$

Active power three phases, asymmetric load Reactive power three phases, asymmetric load with switch over for three phase system

Display three channels
Keys $\mathrm{CH} 1 / 2 / 3$
Switch in W
Display corresponds to $\mathrm{U}_{10}, \mathrm{U}_{20}, \mathrm{U}_{30}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ $\lambda_{1}, \lambda_{2}, \lambda_{3},\left|z_{1}\right|,\left|z_{2}\right|,\left|z_{3}\right|, \operatorname{Re}\left(z_{1}\right), \operatorname{Re}\left(z_{2}\right), \operatorname{Re}\left(z_{3}\right), W_{1}, W_{2}, W_{3}$ Key SUM, SUM/3
Display corresponds to $\bar{U}, \vec{I}, \Sigma P, \Sigma s, \Sigma \lambda, \Sigma|Z|, \Sigma \operatorname{Re}(Z), \Sigma W$

Switch in VAr

Display three channels
Display corresponds to
Keys $\mathrm{CH} / 2 / 3$, SUM/SUM/3
$Q, \Sigma Q$, sum of reactive energy $+\Sigma$

Range:

Display three-channel
Display corresponds to
U depends on voltage applied
I 0.1 A; series resistance depends on voltage applied

Function:

P F
keys $\mathrm{CH} 1 / 2 / 3$
$\cos \varphi_{12}^{\prime}, \cos \varphi_{23}, \cos \varphi_{31}$ At $\varphi \ldots \underline{120}^{\circ}$ this yields -0.500 Pf $\varphi=180-\operatorname{arc} \cos$

For measuring the phase angles between the phase voltages, connect them in delta.

Measuring efficiency e.g. in a single-phase transformer

$\eta=\frac{P_{2}}{P_{1}+P_{3}} \quad P_{1}=0 \quad \sum P=P_{3}-P_{2}$ 。power loss
e.g. for a converter 50 Hz three-phase / $162 / 3 \mathrm{~Hz}$ single-phase current

$$
\eta=\frac{P_{2}}{P_{1}+P_{3}}
$$

$\Sigma P=\left(P_{1}+P_{3}\right)-P_{2} \triangleq$ power loss

with 2 potential transformers
(with floating star-point HI and LO should be exchanged to achieve symmetrical voltages)

Reserved for personal remarks
8. REMOTE-CONTROL OPERATION - INTERFACE
8.1 Interface functions:

Function
Source Handshake
Acceptor Handshake
Talker
Talker Extension
Listener
Listener Extension
Service Request
Remote-Local
Parallel Poll
Device Clear
Device Trigger
Controller Function
Interface Type

Abbreviation

SH 0 ... SH 1
AH 0 ... AH 1
T $0 \ldots$ T 8
TE 0 ... TE 8
L 0 ... L 4
LE 0 ... LE 4
SR 0 ... SR 1
RL $0 \ldots$ RL 2
PP $0 \ldots$ PP 2
DC $0 \ldots$ DC 2
DT 0 ... DT 1
C $0 \ldots$ C 28
E 1 ... E 2

Built-in functions see Technical data

Detailed description see IEC 625/IEEE 488-1975 Standard.
8.2 Explanation of abbreviations used

Message	Mnemonic abbreviation
Data In-Out 1	DIO 1
Data In-0ut 8	DIO 8
Data valid	DAV
Not ready for data	NRFD
Not data accepted	NDAC
Attention	ATN
Interface clear	IFC
Service request	SRQ
Remote enable	REN
Device clear	DCL
Selection device clear	SDC

Group execute trigger	GET
Data byte	DAB
Data byte accepted	DAC
Go to local	GTL
My listen address	MLA
My talk address	MTA
Other talk address	OTA
Ready for data	RFD
Serial poll enable	SPE
Un1isten	UNL
Untalk	UNT
Status byte	STB
The Bus structure is divided into three groups of signal lines:	
Data Bus:	8 signal lines
Transmission Contrnl Bris:	3 signal lines
Interface Control Bus:	5 signal lines
Level assignment:	
Log. 0 False	High state of signal level H
Log. 1 True	Low state of signal level L
Type of coding: E single-wire message M multi-wire message	
Message class AB addressed command	
AD address (for talking and listening)	
GA device-dependent	
HA handshake	
UB universal command	
SE secondary message	
2 S sta	message

Remote messages that can be transmitted by the Interface

Message	Abbr.	Notes	Coding type	class	Bus signal line(s) and coding of true value of message								
					DIO lines								
					87654321	DAV	NRFD	DAC	ATN	EOI	SRQ	IFC	REN
DATA ACCEPTED	DAC		E	HS		X	X	\varnothing	X	X	X	X	X
DATA VALID	DAV		E	HS		1	X	X	X	X	X	X	X
DATA BYTE	DAB	1,9	M	GA	DD DDD DDD	X	X	X	\emptyset	X	X	X	X
READY FOR DATA	RFD		E	HS	XX XXX XXX	X	\varnothing	X	X	X	X	X	X
REQUEST SERVICE	RQS	9	E	ZS	XI $x \times x$ Xxx	X	X	X	\varnothing	X	X	X	X
SERVICE REQUEST	SRQ		E	ZS	XX XXX XXX	X	X	X	X	X	1	X	X
StATUS BYTE	STB		M	ZS	SXSSSSSS	X	X	X	\emptyset	X	X	X	X

Notes: 1 D1 ... D8 are the device-dependent data bits
3 L1 ... L5 are the device-dependent listener adress bits
4 T1 ... T5 are the device-dependent talker address bits
9 Messages an ATN lines emanate fram Controller, while messages on the DIO lines are enabled by T function
$X \quad$ Disregard when decoding received messages
X Must not be set for decoding when transmitting a message

THE TWO BUS PLUGS

8.3 || Device address setting Pressing the "ENTER" key passes from measured-value display into the address-input state. If the instrument is in the "TALK ONLY" state - as shown by the appropriate display beside the address - this state must be prepared for clearing by pressing the "CLEAR" key, because otherwise no remote control is possible.

Input range: 00 ... 30
The flashing CURSOR indicates the input position. The old address can be changed by input from the digital keyboard. Pressing the "ENTER" key stores the selected address and simultanoulsy returns to the previously valid measured-value display.
8.4 Remote-control commands

The message "GET" starts the energy measurement. To stop the energy measurement the commands H 1 or H 5 must be used.

Special version for transformertest:
(indication)
V ... rectified mean $x 1.11$... UM
W ... formfactor ... FF
Q ... corrected power ... PC

8.5 Status byte

In order to avoid erroneous measurement and for easier indification of errors it is possible to inquire the status byte and ascertain the current error. The status byte can be interpreted as the decade sum of the weights of the following 8 bits.

Status byte

DIO 8	RQS						DIO 1
S8	S7	S6	S5	S4	S3	S2	S1
128	64	32	16	8	4	2	1

S1	\ldots	1	in case of trigger error
S2	\ldots	2	
in case of faulty input message			
S3	\ldots	4	
in case of underrange for $U, ~ I ~$			

For automatic processing of the error message during a program run, the Controller is programmed for Interrupt by $S R Q$ or the latter is inquired as needed. In order to obtain an SRQ for the desired error message, the instrument must be activated before inquiry with the following commands:

G 0 erases Gl - G6
G 1 trigger error occurs when "GET" is transmitted in mode H0, $\mathrm{H} 3+\mathrm{H} 5$ or when the measuring time has not expired before sending "GET"

G 2 faulty input
G 3 underrange $<40 \%$ of nominal range for U, I
G 4 overrange $>120 \%$ of nominal range for U, I
G 5 conversion completed (after Group Execute Trigger)
G 6 after every conversion

8.6 Additional error messages

Overrange and underrange messages

On being requested with " Y " the instrument transmits a number (4 figures) which may be interpreted as the decade sum of the weights of the following 4 bits.

If a current or voltage channel is within its regular range, its two bits show a "O" signal. In case of overrange the "OR" bit shows a "l" signal, in case of underrange the "UR" bit shows a "1" signal. These combinations result in the sum of the four-digit number concerned. From this number it is possible to obtain information for range correction in the Controller.

CH 3			CH 2				CH 1					
U		I		U		I			U		I	
UR	OR											
2048	1024	512	256	128	64	32	16	8	4	2	1	

UR ... underrange
OR ... overrange
$\left.\begin{array}{rlr}\text { e.g., CH } 3 \text { U underrange } & 2048 \\ & \text { I underrange } & 512 \\ \text { CH } 2 \text { I overrange } & 16\end{array}\right\} Y=2576$

Error message for energy measurement
In remote control operation the error message for energy measurement appears in byte 4 of the print-out (overrange-message) according to the following table:

main failure	P	-	X						X	X	X	X	X	X	X	
arithmetic	F	-		X			X	X	X				X	X	X	X
change range, scalef.	C	-		X		X		X	X		X	X			X	X
overrange	O	-				X	X	X		X	X		X		X	
byte 4		blank	P	F	C	O	G	H	K	L	M	Q				

X ... actual valid error message

8.7 Programming hints

For programming the wattmeter the required commands must be combined into a remote-control string. Separation of individual commands within the string is effected by the semicolon ";". The entire string must be suitably marked (e.g. between quotation marks) and separated from the IEC command by a prefixed separator (e.g.
). The IEC command code, addressing character, separator and string marking are device-dependent and may therefore vary. Refer to the appropriate programming manual and combine them with device commands. In the section on sample programs this combination will be given for several types of computer.

The remote-control commands " $R, S, O^{\prime \prime}$ must always be in first place within the string. The comands for channel and function can be exchanged in between the semicolons, but for greater clarity the channel code should be transmitted first.

Scale factor:

If the scale factor is not programed, the scale factor last used is also valid in remote-control operation. The scale factor can be entered as a number of up to 6 digits or in exponential format. Transmission of the scale factor is marked by a prefixed "S".
e.g. Channe1 2 voltage, $R=100(10000 / 100 \mathrm{~V})$

Input	"SBU100"	or $" S B U 10000 \mathrm{E}-2 "$
Display $S 1: 000100 / 1.000 \mathrm{~V} / \mathrm{V}$	or $\mathrm{S} 1: 010000 / 100.00 \mathrm{~V} / \mathrm{V}$	

e.g. Channel l-3 current 1000/10 A

Input	"SDI 100"	or "SDI 1000E-1"
Display	S:000100/1.000 A/A or $5: 001000 / 10.000 \mathrm{~A} / \mathrm{A}$	
	Input range: .000001 E-6 -999999 E+6	
	No 0 in the mantissa	

Range selection:
The correct range is selected by transmitting the maximum expected measured value, characterized by a prefixed "R".
e.g.: Channel 2 voltage 220 V all channels current 4 A

Input "RBU 220"
"RID 4"
Display RANGE CH2 260 V
RANGE 5.0 A

Averaging of measured values:
e.g. 100 averaging processes running
$\begin{array}{ll}\text { Input } & \text { "NR 100" } \\ \text { Display } & N=00100 \text { RUN after } N\end{array}$

50 averaging processes with "HOLD"
"NH 50"
$\mathrm{N}=00050$ HOLD after N

Request for measured value:

e.g. Channel 1	current, voltage, active power, power factor
Channel 2	current, voltage, active power, power factor
Channel 3	current, voltage, active power, power factor
Channel sum current, voltage, active power, power factor	

Input "AI;AU;AP;AF;BI;BU;BP;BF;CI;CU;CP;CF;DI;DU;DP;DF"
Identical commands need only be written once, so that the string is considerably simplified:
Input "AI;U;P;F;BI;U;P;F;CI;U;P;F;DI;U;P;F"

Output format:

Each measured value is output at 15 bytes terminated with the end character that the Controller used for the request. All final characters complying with DIN standard 66.22 are accepted. All final characters can be combined with EOI or the data byte transmitted with EOI.

```
    e.g. ETB; ETX; CR; LF; CR/LF; Power On state: CR/LF
```

For reading the measured values, after a request for measured values read the string with the appropriate read command of the Controller, then format or evaluate as required.
Caution! String length must not exceed the maximum string length of the Controller (e.g. max. 255 bytes).

Input of assignment measured quantity - analog output value e.g.:
e.g. 100.000 V corresponds to +10 V on analog output 1

This input permits any assignment of a measured value to the full-scale value of the analog output. This assignment permits attainment of full-scale deflection even at partial channel levels. In order to avoid overrange conditions, the largest measured value must not exceed the maximum value as entered. If the full-scale value is chosen too large, resolution and accuracy are needlessly reduced.

Input of calibration of analog output
"0 1 J 0"

Caution:

If during remote-control operation the instrument was not put permanently in remote state, the programoing data (e.g. scale factor, range etc.) can be changed from the keyboard during remote operation. If this is to be prevented, the RTL key should be disabled by transmitting "LLO" and the instrument to be placed in permanent remote state by transmitting "REN". The display remains fully operative even in remote operation. Thus all information can be placed in the display from the keyboard.
"TALK ONLY" operation see section 5.5.8.

Abbreviations:

```
nn ... position 01 ... 38 fff ... scale factor ... 0 ... 9,
mm ... measured value ... A, V, V , W, VA, Pf, Wh, %, R,Sa
ccc ... channe1 ... CH1, CH2, CH3, \Sigma, \Sigma/3, blank (for %)
p ... power ... ju, m, empty, k, M, G, T
z ... CR/LF
```

9．SAMPLE PROGRAMS FOR DIFFERENT CONTROLLERS

```
10 REM ****************************************************
20 REM * PROGRAMMINGEXAMPLE OF D 5155 BY *
30 REM * CBM 8032 *
40 REM *******************************************************
50 : REM ADDRESS OF DS155 = 5
60 OPEN1,5: REM OPEN IEEE-CHANNEL
```



```
80 PRINT#1,"SAI1": REM SCALE:S2:000001/1.0000 A/A
90 PRINT*1,"RAUEG0": REM RANGE CH1 2S0 V
100 PRINT#1,"RAI1": REM RANGE CH1 1.0 A
110 PRINT#1,"H0": REM RUN MODE
120 PRINT#1,"AU;I;P;F;X": REM CALL FOR CHI:U,I,P,F.X
130 INPUT#1,AS:IFST=2THEN130:REM READ OUT OF TEST'RESULTS
140 PRINT#1,"z": REM CALL FOR CH1:Z
150 INPUT*1,B=:IFST=2THEN150:REM READ OUT OF TEST RESULT
160 A$=A$+";"+B$: REM ADDITION OF TEST RESULTS
170 FOR I =1 TO E: REM SEPARATE OF SINGLE TEST RESULTS
```



```
190 : REM OF A多 IN AS(1)
200 PRINTA鈤 I)
210 NEXT:PRINT
2こ0 GOTO120
```

```
10 REM *****************************************************
20 REM * PROGRAMMINGEXAMPLE OF D 5155 BY *
30 REM * CBM 9032 *
40 REM *****************************************************
50 : REM ADORESS OF D5155 = 5
E0 OPEN1,5: REM OPEN IEEE-CHANNEL
70 PRINT#1,"SDU100E-2;RDUS60;RDI1:H1"
80 : REM TRANSMITTING OF SETDATA
90 PRINT#1,"OIUA250.00": REM COMMAND FOR ANALOGOUTPUT
100 POKE165,32+5: REM LISTEN #5 (X0100 01010)
110 SYS 61695: REM QUTPUT TO IEEE-BUS +ATN=1
120 POKE165,8: REM GROUP EXECUTE TRIGGER (Y000 1000)
130 SYS 61695: REM OUTPUT TO IEEE-BUS +ATN=1
140 POKE165.63:
150 SYS 61765:
160:
170 PRINT#1,"DU;I;P;F;X": REM CALL FOR CH1:U,I,P,F,X
```



```
190 PRINT#1,"Z": REM CALL FOR CH1:Z
200 INPUT#1,B乎:IFST=2THEN20D:REM REAL OUT OF TEST RESULT
210 As=A$+";n+B(: REM ADDITION OF TEST RESULTS
220 FOR I =1 TO 6: REM SEPARATE OF SINGLE TEST RESULTS
230 A$(I)=MID㲅A$,15*{(1-1)+1,15)
240 : REM OF A客 IN A軲 I)
250 PRINTA軫 I)
260 NEXT:PRINT
270 GOTO100
```



```
    2g REM * PROGRAMMINGEXAMPLE OF D SIS5 BY SIEMENS *
    30 REM * CONTROLLER B 30111 *
```



```
    50
    60 CLEAR DIM As( 100),M* (16,7)
    70 ICLHREN1HLLO WREM INITIALIZE OF BUS
    SET(V)3=*SDU100E - 2;SDI1;ROUR6RFRD11;H1*
                                    REM TRANSMITTING OF SETOATA
    SET(乡)3="01UARSQ. Q0"
    SET(V)3=^ロU;1;P"
    MREM COMMMAND FOR ANALOGOUTPUT
    #REM CALL FOR TEST RESULTS
    HREM EXECUTE TRIGGER
    MREM READ OUT OF TEST RESULTS
    WREM SEPARATE OF SINGLE
```



```
170 PRM** I)
1BE NEXTI解R
190 GOTO110
```

```
10 REM ****************************************************
20 REM * PROGRAMMINGEXAMPLE OF 口 5155 日Y *
30 REM * NORMA CONTROLLER C 9895 *
40 REM *******************************************************
50 : REM ADDRESS OF DS155 = 5
60 CLI#::FORT=1TO2000:NEKT:REM INITIALIZE OF BUS
70 REN鉒: REM SET REMOTE ENABLE
80 LLO#: REM SET LOCAL LOCK OUT
S0 WRT#S\"SAU100E-2": REM SCALE:S1:000100/100.00 V/V
100 WRT#S\"SAI1": REM SCALE:S2:000001/1.0000 A/A
110 WRT#5\"RAUESO": REM RANGE CH1 260 V
120 WRT#S\"RAI1": REM RANGE CH1 1.0 A
130 WRT%S\"HO": REM RUN MODE
140 WRT#S\"AU:I;P;F:X;Z": REM CALL FOR CHI:U,I,P;F,X,Z
150 RED#S\A&: REM READ OUT OF TEST RESULTS
1S0 FOR I = TO 6: REM SEPARATE OF SINGLE TEST RESULTS
170 A ( I)=MID*(A事,15*(I-1) +1,15)
180: REM OF A$ IN A數I)
190 PRINTA$5 I)
200 NEXT:PRINT
210 GOTO150
```



```
20 REM * PROGRAMMINGEXAMPLE OF 口 515S EY *
30 REM * NORMA CONTROLLER C 9895 *
```



```
50: REM ADDRESS OF 口S 15S = 5
60 CLI#:FORT=1TOROOO:NEXT:RENM5:LLO揞
70: REM INITIALIZE OF BUS
80 WRT#S\"SDU10صE-2;SDI1;RDUZED;RDI;H1"
90:
100 WRT#5\"ロ1UA250.0日":
110 TRG#5:
120 WRT移\"ロU:I;P;F:X:Z":
130 RED#S\A旁:
140 FOR I = TO S: REM SEPARATE OF SINGLE
150 A*(I)=MID$(A$s.15*(I-1)+1,15):REM TEST RESULTS OF A$
160 PRINTA溥I)
170 NEXT:PRINT
180 GOTO110
```


A-2351 Wiener Neudorf (Austria), Eumigweg 7, P.O.B. 81, Tel.: 1022 36) $61530-0 \Delta$, Telex: 79316/79439, Cables: NORMAMEIER WIEN

Technische Büros: A-8010 Graz, Morellenfeldgasse 39 Tel.: (03 16) 381004
FS31685

A-6040 Innsbruck, Ander LanstraBe 33
Tel.: (05222)61413
FS 53097

