
Apps CanQuickly Destroy Your Mobile’s Flash: Why They Don’t,
and How to Keep It That Way

Tao Zhang
The University of North Carolina at Chapel Hill

zhtao@cs.unc.edu

Aviad Zuck
Technion – Israel Institute of Technology

aviadzuc@cs.technion.ac.il

Donald E. Porter
The University of North Carolina at Chapel Hill

porter@cs.unc.edu

Dan Tsafrir
Technion – Israel Institute of Technology &

VMware Research
dan@cs.technion.ac.il

ABSTRACT
Although flash cells wear out, a typical SSD has enough cells and suf-
ficiently sophisticated firmware that its lifetime generally exceeds
the expected lifetime of its host system. Even under heavy use, SSDs
last for years and can be replaced upon failure. On a smartphone,
in contrast, the hardware is more limited and we show that, under
heavy use, one can easily, and more quickly, wear out smartphone
flash storage. Consequently, a simple, unprivileged, malicious ap-
plication can render a smartphone unbootable (“bricked”) in a few
weeks with no warning signs to the user. This bleak result becomes
more worrisome when considering the fact that smartphone users
generally believe it is safe to try out new applications.

To combat this problem, we study the I/O behavior of a wide
range of Android applications. We find that high-volume write
bursts exist, yet none of the applications we checked sustains an
average write rate that is high enough to damage the device (un-
der reasonable usage assumptions backed by the literature). We
therefore propose a rate-limiting algorithm for write activity that
(1) prevents such attacks, (2) accommodates “normal” bursts, and
(3) ensures that the smartphone drive lifetime is longer than a
preconfigured lower bound (i.e., its warranty). In terms of user
experience, our design only requires that, in the worst case of an
app that issues continuous, unsustainable, and unusual writes, the
user decides whether to shorten the phone’s life or rate limit the
problematic app.

CCS CONCEPTS
• Information systems → Flash memory; • Security and pri-
vacy →Mobile platform security.

ACM Reference Format:
Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. 2019. Apps Can
Quickly Destroy Your Mobile’s Flash: Why They Don’t, and How to Keep It
That Way. In The 17th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’19), June 17–21, 2019, Seoul, Republic of
Korea. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3307334.
3326108

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 17th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys ’19),
June 17–21, 2019, Seoul, Republic of Korea, https://doi.org/10.1145/3307334.3326108.

1 INTRODUCTION
Smartphones typically include flash-based storage, because flash
offers benefits such as fast random access, shock resistance, high
density, and decreasing costs. A main drawback, however, is that
flash cells can tolerate only a limited number of writes (i.e., pro-
gram/erase cycles) before becoming unusable. Vendors therefore
apply various methods to increase the lifetime of flash packages [19,
41, 44, 48, 55, 59, 69, 84, 92, 93, 147], primarily by (1) provisioning
more physical than logical flash cells, and (2) using a sophisticated
firmware layer to spread the wear across these cells.

One can determine how many physical flash cells are needed
to support an expected device capacity in its logical block address
(LBA) space, and a lifespan of, say, three years, by using a sim-
ple, back-of-the-envelope calculation: take the expected number of
writes for the advertised LBA space over a three year period, and
divide it by the number of per-cell program-erase cycles that indi-
vidual cells can tolerate [36, 40, 42, 67, 97, 106, 120, 129, 131, 133].
Consequently, most high-end SSDs have multi-year warranties [76,
120, 124, 131, 133]. Field studies on the lifetime of consumer-grade
SSDs demonstrate that even these relatively inferior devices can
last for years under strenuous workloads before failing [36, 129].
Section 2 provides background on flash storage and discusses how
the lifetime of SSDs is estimated and managed. Because the life-
times of high-end SSDs are warrantied, we speculate there is a
common, but inaccurate perception, both in academia [42, 67, 106]
and among users [40, 97, 129], that flash endurance is effectively a
non-issue for any flash device.

The first contribution of this paper is an empirical evaluation
of the lifespan of flash storage on a range of mobile phones.
Our results in Section 3 demonstrate that flash lifespan is not a
solved problem in this context. In Section 4 we explain how to
exploit this vulnerability using a simple, unprivileged app that
can easily issue a lifetime’s worth of writes in a few short weeks,
rendering the phone unbootable, or “bricked”. Moreover, we show
how this malware can throttle its write activity so as to remain
undetected by the user, until the phone stops working. We call this
application the “wear-out app”, or WAPP. We measure the lifespan
and minimal time to wear-out several different mobile flash devices,
at various price points, and the results are consistent: wearing out
mobile flash is much easier than wearing out a regular SSD. This
paper adds additional experiments and data to our preliminary
results on wear-out in mobile devices [150].

https://doi.org/10.1145/3307334.3326108
https://doi.org/10.1145/3307334.3326108
https://doi.org/10.1145/3307334.3326108

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

SSD Smartphone
2016

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ba
nd

w
id
th
/c
ap
ac
ity

SSD Smartphone
2017

Consumer
class(Intel)
Enterprise
class(Intel)

SSD Smartphone
2018

Samsung
iPhone
Google
Moto G

Figure 1: The bandwidth-to-capacity ratio over time for smart-
phones and Intel’s SSDs. The ratio of bandwidth-to-capacity for an
SSD tends to balance over time, whereas phones can become danger-
ously skewed toward high bandwidth and low capacity.

The problem stems from an imbalance between the write band-
width and the capacity of the drives, illustrated in Figure 1 for
SSDs [137] and smartphones [13, 15, 16, 22–26, 54, 79]. Technologi-
cal advancements, such as faster interfaces or improvements in flash
technology, may temporarily change the balance. Over time, the
bandwidth-to-capacity ratio evolves in a manner that tends to even
out for SSDs. In contrast, the lower capacity of smartphones, cou-
pled with more limited hardware and less sophisticated firmware,
tend to create a dangerous imbalance: smartphone apps can easily
issue a lifetime’s worth of writes in a short time.

This problem is alarming because mobile ecosystems have cre-
ated an arguably false sense of security—that trying out an app will
not permanently damage your device. Mobile operating systems
(OSes) have a tighter security model than a desktop OS [27, 28, 34],
and app stores have some review process, even if it can be lax in
practice [110, 134, 152]. As a result, users often give little-to-no con-
sideration before downloading third-party applications [65, 74, 107],
rooting their devices, and trusting applications. Yet neither the vet-
ting process for these applications, nor the underlying OS storage
abstractions are designed to manage permanently consumable re-
sources [114] and prevent wear-out attacks. If a phone’s flash is
worn out, whether maliciously or not, it is not user-serviceable; in
terms of repair cost and data integrity, destroying the flash is tanta-
mount to destroying the device. To make things worse, unlike their
full-fledged SSD counterparts, the specifications, performance char-
acteristics, and lifetime estimates of mobile storage devices are not
made public. Vendors make no claims about the longevity of these
devices. Furthermore, the tight hardware budget of these devices
limits the applicability of common lifespan extension techniques.

The second contribution of this paper is a characterization of
thewrite I/O behavior of awide range of benign smartphone
apps, with a particular focus on write-intensive apps (Section 5).
Our findings show that many applications issue minimal I/Os (well
below 200 KiB/s) but some applications can indeed generate intense

write bursts. In practice, these bursts are not sustained long enough
to be problematic, except in the most extreme cases.

The third contribution is an empirical explanation of why
benign apps do not wear out smartphone flash in practice.
Although write-intensive apps can issue significant bursts of I/O
activity, when averaged over a typical day of use, the average write
bandwidth can be sustained for several years. As supported by
recent studies [33, 49], we assume that a typical user (1) uses apps
on their smartphone for two hours a day; and (2) this usage is spread
among a range of apps from different categories.

Because I/O-intensive malicious apps can pose a threat to users,
Section 6 contributes a defense against dangerous I/O behav-
iors and the WAPP attack, using unmodified, commodity hard-
ware. Based on the characterization of expected app behavior, we
design a policy such it is never felt by users in the vast majority of
cases, unless: (i) they are under attack, or (ii) they exceed reasonable
usage assumptions. Our solution begins by setting a target lifespan
for the device, say 2–3 years. The OS tracks the remaining total
writes and lifespan, and periodically allocates available writes to
applications. Some writes are given to applications directly, and
some are held in a slack pool. As the slack writes are consumed,
heavy consumers are flagged and potentially rate-limited.

Our analysis shows that there are, admittedly less likely, scenar-
ios where a user could shorten the lifespan of her phone through
extremely heavy, intended use. For example, Final Fantasy is a
write-heavy application, and one who plays for 16 hours per day
every day could shorten the lifespan of the phone. Unfortunately,
there is no general way to distinguish between this situation and
an attack; in any case the result is the same: the user has installed
an app that will shorten the lifespan of the phone. In terms of user
experience, we believe this is the point at which the user should
be warned that one or more apps will shorten the lifespan of the
device, and she can decide to remove the app, rate-limit the app,
or accept risks and continue. For reasonable use cases, our defense
does not disrupt normal apps, and can resist the WAPP attack.

Although this paper focuses on smartphones, we believe this
concern generalizes to any mobile or embedded device, from a
smartwatch to internet-of-things gadgets to critical infrastructure,
such as smart meters. The requirements are simply (1) less expen-
sive flash devices and (2) the ability to execute user-level code,
either via an app store, or perhaps loaded through another exploit.
Although the main harm in the case of a smartphone user is the
cost of a phone and its data, one could imagine more drastic conse-
quences in rendering critical infrastructure or smart medical devices
unexpectedly inoperable. Thus, it is likely that wear management
will be a growing concern in new classes of devices that integrate
small computers with other aspects of daily life.

2 BACKGROUND
NAND Flash. Flash packages are composed of large arrays of se-

rially connected floating-gate cells [59]. Data is written by charging
cells to a target voltage levels. The logical value of a cell is read
by comparing its voltage to a voltage threshold. Data is read and
written at page units, typically 4–16 KiB. Pages are further grouped
into blocks, typically 256–4096 KiB in size.

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

Flash memories cannot update data in-place [61, 145, 154]. Up-
dating a page requires that it first be erased, which reinitializes
the voltage levels of the cells at the coarser granularity of a block.
This process of writing (or programming) and erasing is called a
Program/Erase cycle, or P/E cycle.

Because flash memories prohibit updates in-place, the SSD firm-
ware, called a flash translation layer (FTL) must reclaim and move
live data to different physical blocks, so that blocks can be erased
and accept new data. Consequently, host-level writes may result in
internal garbage collection overheads, where a larger amount of
live data must be internally rewritten in order to erase a block for
new writes, or, firmware-level write amplification [52, 69].

Flash blocks can endure a limited number of P/E cycles. Over
time, additional electrons become trapped in the floating gate, caus-
ing uncorrectable bit errors. Some number of bit errors can be
corrected transparently with parity checks, but a flash block can
age to the point that it generates more bit errors than parity can cor-
rect. This problem is exacerbated as flash memories become denser.
Earlier generations of flash chips, storing 1 bit per cell, endured up
to 100K P/E cycles. Modern chips, storing 2–4 logical bits per cell,
can only endure 1–3K P/E cycles [43, 62, 125].

A plethora of methods have been proposed to improve the life-
time of flash storage, primarily by evenly distributing wear over
flash blocks [19, 39, 59] and using error-correcting codes [41, 55]
to compensate for bit errors. Additional methods for extending
SSD lifetime include high and low-endurance flash hybrids [46, 93],
intra-SSD redundancy [86], data reduction [48, 140, 155], and re-
shaping [80, 84, 92]. Cai et al. [43] provide an extensive review of
flash lifetime extension techniques.

SSD Lifetime Estimation in the Wild. Lifetime estimates of flash
packages allow us to speculate on the lifetime of SSDs. Conserva-
tively assuming that various optimizations in hardware, firmware,
and software balance out ill-behaved user workloads, one can as-
sume that the SSD can endure at least as many rewrites as its under-
lying storage media. For a typical consumer-grade SSD, this means
3K rewrites [125] of the drive’s advertised capacity, or, three drive
writes per day over three years. Several recent studies by datacenter
operators corroborate this calculation and independently conclude
that various SSDs last for years [103, 108, 125], despite relatively
strenuous usage patterns. Other studies also concluded that SSDs
can write petabytes of data before failing [36, 129]. Such findings
lead many consumers to believe that SSDs last for extremely long
periods of time [40, 42, 67, 97, 106, 129]. Vendor drive warranties
reflect more concrete and conservative estimates of SSD usage and
lifetime expectations; vendors also expect modern flash drives to
last for years under typical usage patterns [76, 120, 124, 131, 133].

The combination of strong vendor warranties and the experience
of commercial SSD products lasting for years under strenuous usage
leads to a common perception that the endurance of flash-based
drives is effectively a non-issue.

3 MEASURINGWEAR-OUT
This section measures the performance characteristics of several
mobile flash devices, under random and sequential write workloads.
We demonstrate that these workloads can wear out the devices
quickly, despite differences in the underlying hardware.

Device (Storage info.) OS
eMMC 8GB
(THGBMBG6D1KBAIL eMMC 5.0 [132]) Ubuntu 16.04

(kernel 3.14.79)eMMC 16GB (iNAND 7030 eMMC 5.0 [123])

µSD 16GB (Kingston SDC4/16GB [90])

Samsung S9 64GB
(Toshiba THGAF8G9T43BAIR UFS 2.1) [18] Android 9

Samsung S6 32GB
(Samsung KLUBG4G1BE-E0B1 UFS 2.0) [10] Android 6.0.1

Moto E 8GB (Samsung QN1SMB eMMC 4.5) [8] Android 5.1

BLU 512MB (K524G2GACH-B050 NAND Flash) [6] Android 4.4
BLU 4GB (TYC0FH121638RA eMMC) [5]

Table 1: Evaluated mobile storage devices.

3.1 Evaluation Setup
Our experiments use a range of prevailing mobile storage solutions
on the market, including eMMC, UFS, and MicroSD (µSD) [37, 77,
78]. Table 1 lists the devices used in our experiments. The first
class of measured devices includes two external eMMC chips and a
conventional µSD card, also commonly used as external, additional
storage in smartphones. All experiments on external eMMC chips
were performed using the ODROID C2 platform [64].

We also measure smartphones. Most experiments use a mid-
range Moto E 2nd Gen smartphone [8] and two high-end Samsung
smartphones, S6 and S9 [10, 18], which have UFS [78] storage de-
vices. We also examine two budget smartphones, referred to as
“BLU 512MB”[6] and “BLU 4GB”[5], to see how cheaper hardware
affects lifespan. Smartphone experiments are conducted using their
stock Android systems and default Ext4 file system, except the
Moto E 8GB, which uses F2FS[92], a flash-friendly file system. To
study the effect of file systems, we ran the same experiments on
two Moto E 8GB phones, one with F2FS and the other with Ext4.
All experiments in this section use the fio benchmarking tool [7].

3.2 Performance Characteristics
We first explore the I/O characteristics of eMMC chips, to under-
stand their behavior and find the most problematic I/O access pat-
terns for these devices. Figure 2 shows the throughput of a sequen-
tial and random I/O microbenchmark on an empty device, with
varying synchronous request sizes. For brevity, we omit read results,
which were similar to the write results.

Our results demonstrate that eMMC chips are faster than the
µSD card in all I/O patterns, contrary to a common conception that
eMMC chips are essentially repackaged µSD cards [53, 88]. Further-
more, random and sequential write performance of eMMC chips are
similar and generally scale linearly until the device is saturated. We
conclude that the I/O performance of modern eMMC devices hinges
on request size, as larger requests better utilize internal hardware
parallelism [19, 82, 144] and reduce storage software overheads.

3.3 External eMMCWear-out
Based on the micro-benchmark results, we hypothesize that eMMC
chips can serve a large volume of intense write I/O activity within

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

512 B 4 KiB 32 KiB 256 KiB 2 MiB 16 MiB
I/O Block Size

0

25

50

75

100

125

150

175

200

Th
ro
ug

hp
ut

(M
iB
/s
)

Samsung S9 64GB
Samsung S6 32GB
Moto E 8GB
eMMC 8GB
eMMC 16GB
µSD 16GB

(a) Sequential Write

512 B 4 KiB 32 KiB 256 KiB 2 MiB 16 MiB
I/O Block Size

0

25

50

75

100

125

150

175

Th
ro
ug

hp
ut

(M
iB
/s
)

Samsung S9 64GB
Samsung S6 32GB
Moto E 8GB
eMMC 8GB
eMMC 16GB
µSD 16GB

(b) Random Write

Figure 2:Mobile storage write throughput as a function of I/O write
size (higher is better).

a relatively short span of time. Such write activity can quickly
consume the P/E cycle quota of the underlying flash cells.

To test this hypothesis, we use the eMMC lifetime estimation
indicator [77]. This standard indicator is reported by the device
firmware, as a number from 1 to 11; when the indicator has value
n, it means the chip’s consumed lifetime is between (n − 1) ∗ 10%
and n ∗ 10%. The specifics of how the device’s lifetime is estimated
are proprietary and most likely vendor-specific. An indicator value
of 11 does not necessarily mean that the chip will immediately
stop functioning; rather, a value of 11 signifies that, according to
the firmware’s estimation, the chip has exceeded its maximum
guaranteed lifetime, may introduce uncorrectable errors in stored
data, and should be considered unreliable [77]. A chip at this state
could stop functioning at any moment.

We repeatedly issued 4 KiB writes in randomly selected regions
of four 100 MiB files on each external card, and measured the wear-
out indicator. Because flash cannot update in place, writing to the
same file and logical block on the device causes a new write to a
new physical location in the storage device. Notably, this simple I/O
pattern induces no write amplification, but simply forces repeated
re-programming of its flash pages. As a result, increasing the size
of the device’s over-provisioned space cannot significantly reduce

Wear-out Indicator

I/
O

 A
m

ou
n

t
to

 I
nc

re
m

en
t

(G
iB

)

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

0

400

800

1200

1600

2000

2400

eMMC 8GB
eMMC 16GB

Figure 3: Amount of I/O needed to increment the wear-out indicator
on two external eMMC chips.

the wear-out effect of this access pattern without exceeding the
device’s price point.

The results in Figure 3 show that the required I/O volume to
increment the wear-out indicator is mostly constant throughout
the lifetime of the devices. The first few increments tend to hap-
pen faster, which we hypothesize is attributable to initial software
installation and vendor testing. In total, it takes a maximum of
992 GiB to increment the wear-out level by 10% in the 8GB eMMC
chip. Interestingly, this result is roughly 3× lower than the “back-
of-the-envelope” 3,000 complete rewrites one would expect to wear
out the device [43, 62, 125]. Moreover, at a maximum throughput
of 20 MiB/s, one could write this volume of data in 140 hours (6
days). For the 16GB eMMC chip, 23 TiB of writes are required to
reach end-of-life after 164 hours (7 days) at 40 MiB/s.

3.4 Smartphone Wear-out
In prior experiments [150], we found that both small, randomwrites
(as in the previous subsection), and large, sequential writes had
the same impact on flash lifespan in terms of total bytes written
to increment the wear indicator. However, we found that large,
sequential writes could be issued to the device faster, and realize
higher throughput on the underlying device. Thus, in this section,
we issued continuous, large, synchronous, sequential write opera-
tions to wear out mobile flash devices. All smartphone wear-out
experiments were run using a simple, malicious app (§4).

Our key result, illustrated in Figure 4, is that the storage device in
all phone models can be worn out in a matter of days to a few weeks.
Here, we show only the time to get to level 6 (except S9, which had
only reached 5 at the camera-ready due date); we took every device
all the way to 11, except the S6 and S9. Timing results vary, even
for the same device model, most likely due to firmware-specific
behaviors and optimizations, as well as the maximum throughput
the malicious app can achieve (e.g. by using native library support
which can better utilize the higher bandwidth provided by high-end
storage chips, time spent in 3=>4 decreased significantly on the
Samsung S6 phone we tested, as shown in Figure 4). Specifically,
time consumption in 1=>2 on Samsung S9 bursts to ∼98 hours due
to a non-optimized WAPP in terms of I/O size, which is easily fixed

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

 0

 20

 40

 60

 80

 100

1=>2
2=>3
3=>4
4=>5
5=>6

T
im

e
[H

ou
rs

]

Wear-out Indicator Increment

eMMC

8GB
16GB

1=>2
2=>3
3=>4
4=>5
5=>6

Moto E 8GB

F2FS
Ext4

1=>2
2=>3
3=>4
4=>5
5=>6

Samsung

S9
S6

Figure 4: Time to increment wear-out indicators on two smartphone
models and two external eMMC chips.

in following experiments. In the two budget smartphones “BLU
512MB” and “BLU 4GB” the flash storage chips did not provide
reliable wear-out indications. However, both phones were bricked
within two weeks. As for the two Moto E phones, both models were
bricked two weeks after reaching the maximum wear indicator
value. Notably, and consistent with Figure 1, the results are not
sensitive to the capacity of the mobile storage device being used.
This result is attributable to vendors increasing flash capacities
by either using high-density, low-endurance memories (e.g., TLC
flash [62]), or by scaling the number of flash units operated in
parallel. When combined with higher-bandwidth interfaces, the
result is a larger capacity device that is almost as susceptible to
wear-out attacks as its smaller predecessors.

Consistent with Figure 3, the time to get to the first few wear
indicators is typically less than the rest. In general, the measure-
ments after level 5 are more consistent for smartphones as well as
individual chips.

4 WEAR-OUT ATTACK
This section describes our threat model and a proof-of-concept
wear-out attack that works on real-life mobile systems using only
a simple, virtually permission-less app. We also discuss how our
app can evade various detection mechanisms.

4.1 Threat Model
We consider a benign system with a file system on a flash-based
mobile storage device (e.g., an eMMC chip), which provides users
the ability to install executable applications. The mobile device is
warrantied for L years (e.g., 2 years) and can sustainW terabytes of
flash-level writes. The device supports a maximumwrite bandwidth
of Bmax , which, if applied constantly, will wear out the device before
L. We assume the file system respects synchronous I/O, i.e., an
fsync() immediately pushes dirty file data onto the underlying
storage device. We also assume user apps may write at least 100 MiB
to either private or public files.

We assume the adversary’s code is installed and can run on the
victim device. We envision a common case where the adversary’s
code hides its I/O-intensive nature from the end-user, such as by
disguising itself as a benign app or running as a “trojan horse” in
an advertising library in another useful app. We do not assume the

app has any special privileges, nor do we require any other exploit
of the system.

4.2 Implementation and Avoiding Detection
We implemented a simple attack application, called WAPP. WAPP
continuously rewrites 100MiB files in the app’s private storage area,
which is allocated to the app by default. The app rewrites data with
large, sequential I/Os, in order to realize the maximum throughput
Bmax supported by the device. WAPP is only 963 lines of code.

Next, we experimented with the difficulty of hiding a malicious,
I/O intensive application on Android. We observe two likely indi-
cators of a problematic app that would manifest before the device
is bricked. First, Android monitors energy consumption, but only
when on battery. Thus, we can evade detection via power monitor-
ing by only running I/O intensive work when the phone is charging;
the app can tell when the phone is charging. Also note that phones
today spend a significant portion of time charging because most
devices do not have a removable battery. Second, even with proper
social engineering, continuously running WAPP in the foreground
may alert users. We therefore run WAPP in the background. Most
Android versions show apps currently running in background or
as services (cf., ps on Unix). We observe that the refresh time for
this monitor is around one second, and the app can detect when
the screen is lit. Because most phones spend a significant fraction
of the day charging with the screen disabled, WAPP can effectively
evade monitoring by suspending its malicious I/O activity when
the screen is turned on. In summary, most phones spend a signif-
icant fraction of the day charging with the screen disabled; even
a stealthy version of this experiment could brick a phone within
some reasonable factor of the time in these experiments.

We note that continuously running malicious applications may
cause the phone to abnormally heat up, which may raise the suspi-
cion of users, though such extent of heating may be attributed to
heat generated by the charging process. We leave the exploration
of this, and other possible detection methods for future work.

4.3 Permissions and Capabilities
One telltale sign of a malicious app is requesting more privileges
than would seem needed for the advertised functionality [38, 136].
The only permission WAPP requires is the ability to read and write
its own files. This permission is usually considered fundamental
and harmless.

WAPP also requires several additional capabilities. In order to
operate when the screen is off WAPP currently utilizes Android’s
WakeLock mechanism [30]. To avoid suspiciously high power con-
sumption,WAPP detects the charging state of the devices and listens
to relevant system broadcasts on charging states [31]. These capa-
bilities are granted by default to all apps. That said, our use of Wake-
Lock may be restricted by the most recent version of Android [4].
To realize the same behavior without the use of WakeLock, we can
use periodic tasks, such as scheduled jobs or alarms, to repeatedly
re-initiate malicious activities in the background [1, 35]. In conclu-
sion, WAPP can mount an effective wear-out attack with essentially
no permissions beyond those routinely granted to any app.

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

 0

 1

 2

 3

 4

 5

a.
 a

vg
 w

ri
te

 b
/w

 [
M

iB
/s

]

 0

 20

 40

 60

 80

 100

 120

b.
 m

ax
 w

ri
te

 b
/w

 [
M

iB
/s

]

 0

 50

 100

 150

 200

 250

 300

c.
 to

ta
l w

ri
te

s
[M

iB
]

 0

 20

 40

 60

 80

da
ily

ho
ro

sc
op

e
ca

m
er

a
fin

al
fa

nt
as

y
to

pb
uz

z-
vi

de
o

fli
pa

gr
am

w
al

m
ar

t
pu

zz
le

do
m

ro
bl

ox
pl

ay
st

or
e

fr
ui

tn
in

ja
sp

ot
if

y
an

dr
oi

da
ut

o
m

em
o

ly

to
pb

uz
z-

tr
en

d
w

is
h

w
ea

th
er

ch
an

ne
l

go
og

le
do

cs
ca

sh
ap

p
bo

w
m

as
te

rs
m

us
ic

al
ly

w
or

ds
2

go
og

le
pl

ay
ga

m
es

sn
ak

ev
sb

lo
ck

vi
ru

sc
le

an
er

w
he

el
ti

nd
er

ne
w

sb
re

ak
w

ay
fa

ir
su

pe
r-

le
d

w
or

d
su

pe
rs

pe
ed

cl
ea

ne
r

tr
iv

ia
cr

ac
k

yo
ut

ub
e

pi
nt

er
es

t
in

st
ag

ra
m

es
pn

m
er

ge
to

w
n

go
og

le
pl

us
off

er
up

d.
 m

ax
 o

ut
 o

f t
ot

al
 [

%
]

Figure 5: I/O characterization of the top 40 write-intensive apps, dur-
ing a one minute run.

5 MOBILE APP I/O CHARACTERIZATION
A goal of this work is to defend against premature wear-out and
wear-out attacks without harming normal app behavior or user
experience. Thus, an important question to ask is, what level of
write bandwidth is typically used by current mobile apps? With
this information, we can assess the potential to destroy the device
in practice, as well as whether one can differentiate benign and
dangerous write behavior. This section presents a measurement
study of disk write I/O rates for popular apps, especially during
write-heavy activities.

5.1 Measurement Setup
We perform our measurements on the Samsung S6 model used
in Section 3. The phone uses the default Android 6.0.1 operating
system, and has 32 GB of internal storage and 3 GiB of DRAM. In
our experiments we test two sets of usage scenarios. The first set
is comprised of 27 preloaded apps (e.g., camera, voice recorder)

and the top 150 free applications in the daily download chart of
Google’s Play store from App Annie [33]. From this group we ex-
cluded ten apps that would not install or run properly for technical
issues, such as failing to access the network, or missing external
dependencies, such as needing to connect to Google Home device
manager. Eight more phone customization and keyboard apps were
excluded because they are irrelevant to I/O activity. Three apps
were removed from the store by the time we evaluated them, and
two were unavailable for download because of geographical restric-
tions. A second set of usage scenarios is comprised of I/O-intensive
workloads and apps including an FTP server, file copies, and device
backup and restore.

We used the following method to measure the I/O activity of
each app. First, we installed the app from the Play store (when
necessary), opened it, and performed any necessary setup and reg-
istration. We then closed the app and any other running apps. We
started the application until it fully loaded and then cleared the
file cache. At this point we start monitoring disk I/O activity us-
ing /proc/diskstats. For each app, we identify actions expected
to create the highest write I/O volume, such as recording video
at highest quality; we execute these operations for a period of 60
seconds. Otherwise, we manually operate the app as a normal user,
such as playing a gaming app, or scrolling and posting on social
media apps. We repeated this procedure three times, using data
from the most write-intensive run. Finally, we uninstalled the app
and removed it from the device.

Notably, our goal is to understand the limits of typical app write
I/O behaviors during normal usage behaviors. Automated tools [2,
32] are often unsuitable for testing apps with non-deterministic
behavior. Another issue is that gaming apps use custom libraries
that are often not inter-operable with automated testing tools. Gam-
ing apps constitute close to half of our test set. For these reasons,
we measure the apps under manual operation, rather than in an
automated framework.

5.2 Popular Apps Characterization
Figures 5a and 5b show the average andmaximumwrite I/O through-
put for the first group of applications (preloaded and popular free
apps). For brevity, we only illustrate results for the 40 apps that
displayed the highest average I/O throughput. Surprisingly, the
most write-I/O-heavy app was “Daily Horoscope”, probably due to
poorly written code in earlier versions (experiments with newer
versions of Daily Horoscope observed significantly lower write
I/O volumes). The preloaded Camera application also issued rela-
tively high disk write volumes on average. This result is expected,
since we operated the camera by repeatedly recording videos with
the highest configurable picture quality. Notably, even the most
write-heavy apps still utilize on average less than 5% of the device’s
maximum write throughput (160 MiB/s sequential).

Various workloads can cause apps to display bursty I/O behavior.
Figure 5c shows the total I/O volume issued by each app over the
measurement period. Figure 5d reports how much the burst of
maximum throughput contributed to the write volume issued by an
app—for each app, effectively selecting the writes for the highest
bandwidth second in Figure 5b, and dividing this by the total I/Os
in Figure 5c. The results show that many apps issue high write

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

0 10 20 30 40 50 60
Time (Seconds)

0

20

40

60

80

100

Th
ro
ug

hp
ut

(M
iB
/s
)

USB copy
FTP
Camera

Backup (local)
Restore (local)

Daily Horoscope
Final Fantasy

(a)Write I/O throughput over 60 seconds for three write-heavy usage
scenarios and the three most write-heavy popular apps.

0 10 20 30 40 50 60
Time (Seconds)

0

2

4

6

8

Th
ro
ug

hp
ut

(M
iB
/s
)

Camera
Play Store
Roblox
Puzzledom

Fruit Ninja
Daily Horoscope
Flipagram

Final Fantasy
TopBuzz Video
[idle]

(b) Background write I/O throughput over 60 seconds for 10 write-
intensive apps.

Figure 6: App I/O characterization results

volumes in short, bursty periods, presumably due to persisting of
cached files and discarding [66] temporary files1.

5.3 Write-heavy Applications
Apps excluded from this study may still issue exceptionally high
write volumes to the device. Therefore, we further tested known
apps that are likely to issue such high write volumes during normal
operation. We measure an FTP server app serving a file put request
over LAN, copying large files from a PC connected via the USB
cable, and backup/restore operations using Titanium, a popular
1Android, as well as Linux, counts discard operations as writes to the device. Firmware
discard handling is implementation-specific and proprietary, and it is unknown if and
when discards translate to flash writes. Therefore, our results are an upper bound on
each app’s related wear.

App Avg. throughput (MiB/s) Daily usage (Hour)
USB copy 29.74 1.18
FTP 6.39 5.50
Camera 4.26 8.24
Backup (local) 2.30 15.25
Restore (local) 23.29 1.51
Daily Horoscope 4.98 7.05
Final Fantasy 3.84 9.15

Table 2: Average I/O throughput for apps in Figure 6a, and average
daily usage required to shorten the device’s lifetime.

backup app. For comparison we also include results from the three
most write-intensive applications tested in the first app set (§5.2).

Figure 6a shows the measured write I/O throughput (excluding
discard operations) for each workload over a 60 second run, where
B = 1.46 MiB/s is the maximum average bandwidth level that
does not shorten device lifetime. For each app, Table 2 details the
average throughput and estimated length of daily usage that would
shorten the device’s lifetime. The results demonstrate that most
write-intensive workloads’ average daily write throughput is not high
enough to shorten the device’s expected lifetime.

5.4 Background I/O
Thus far, we have characterized write I/O activity for apps when
actively operating them in the foreground. Previous studies found
that the averagemobile device is active for up to two hours daily and
that most app sessions last no more than a few minutes [33, 45, 58].
Therefore, we investigate app’s background I/O activity.

We define background operation as app activity occurring when
the screen is off, without any user interaction. We first establish
a baseline by measuring background I/O activity when no app is
active, and only preloaded apps are installed during a 5-minute idle
session. In this state, the average I/O throughput is 0.11 MiB/s.

Next, we measure app background I/O activity when the screen
is closed and the device is left idle for one minute. We measure
when the device is charging, in order to avoid entering power-
saving modes that significantly reduce app activity [56]. Figure 6b
illustrates our results. With the exception of Final Fantasy, which
appears to perform periodic checkpoints to disk, most apps cause
little to no background I/O activity.

5.5 Discussion
From the results thus far, one may be concerned that some apps
can shorten the device’s lifetime even under normal behavior. The
S6 model used in our experiments has 32 GB of capacity and a max-
imum two year warranty [122]. According to our measurements,
the minimum volume of writes required to consume 10% of the S6’s
maximum wear is 8.8 TiB. Conservatively assuming that the device
is able to sustain a maximum of 88 TiB writes over the course of its
lifetime, then the device is capable of serving writes from all apps at
an average write throughput of B = 1.46MiB/s. In our experiments
only 10 apps demonstrated such behavior over time when operated
in the foreground (and none in the background). However, usage
scenarios that require nonstop operation of such write-intensive
apps appear unlikely.

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

Modeling wear. To further illustrate the small amount of wear
due to normal app behaviors, we model the amount of wear each
app will cause to the mobile storage device under typical usage.

First, we parameterize the time users spend using mobile apps,
estimated by recent studies at an average Apptime = 2.3 hours
daily [45, 49, 57]. Unfortunately, we could not find publicly available
data on the average time consumed by typical users for each specific
app in our test set. Instead, we approximate the time spent on each
app using Tcat , the fraction of time spent on each app’s category
according to a recent study [49], by conservatively assuming it is
the only app of its category being used (e.g., the only game being
played).

We calculate each app’s wear by taking into account its average
I/O throughput IOthr , as observed in our experiments. We conser-
vatively assume that the app is used every day during the device’s
warrantied lifetime L. Finally, we divide the result byW , the amount
of I/O that the device can serve before it reaches the vendor’s esti-
mated wear limit. In summary, app-related wear can be modeled
as:

Wear =
Apptime ×Tcat × IOthr × L

W

For example, we can calculate the wear induced by the “Final Fan-
tasy” app (IOthr = 3.83 MiB/s) in our S6 device (W = 88 TiB, L =
2 years). We assume apps are being used for Apptime = 2.3 hours
a day, Tcat = 10% of which is used for games [49]. Even under our
conservative model this write-intensive gaming app would con-
sume only 2.5% of the device’s lifetime over a two-year period. In
summary, we conclude that under reasonable usage assumptions,
the vast majority of apps do not display I/O behavior which causes
significant wear on the device.

6 MANAGINGWEAR
Existing systems do not protect against apps issuing destructive
volumes of writes. This section describes and evaluates a policy
that protects against the unlikely event of writes that might harm
the device. We reiterate that increasing device capacities or over-
provisioning more space does not resolve the fundamental problem
that an app can deplete the device’s flash P/E cycles before the
expected lifespan of the overall device. Instead, mobile system de-
signers should follow policies that given a total budget of P/E cycles
for the device’s lifespan ensure that these cycles are not being con-
sumed too quickly. We present one possible solution in this design
space that meets this goal.

6.1 Wear Management Policy
We model our device as having a total number of block writes
(W) that it accepts before being at risk of failure, and a target
remaining lifespan L (e.g., for a new device with a warranty of 2
years, L = 2). AsW is not typically provided by vendors, it can be
be empirically estimated or given a conservative lower bound. Over
time L decreases.W decreases as writes are issued to the device.
Table 3 enumerates the important parameters used in our policy,
and expected values for the S6 phone.

Our algorithm dynamically tracks B =W /L, or the average write
bandwidth the device can sustain without violating the goal of op-
erating for L years (§5.5). The high-order goal is that apps should

not be able to consume more than B average bandwidth over the
device’s lifespan. Intuitively, we start with a naïve rate-limiting
scheme: all apps may write freely until the apps’ cumulative band-
width (total writes divided by the time since installation) reaches
our target B, at which point all apps are throttled to B. The next
few paragraphs refine this simple policy to accommodate typical
usage patterns without harming device safety.

Accommodating Bursts with Daily Quotas. The first drawback of
the naïve policy is that it may not handle short “bursts” of heavy
write I/Os that will average out over, say, one day. For instance,
playing Final Fantasy consumes 3.83 MiB/s of bandwidth on our S6
device (B = 1.46 MiB/s). If the user only plays for two hours a day,
the average over the period of a day will still be a safe 0.32 MiB/s.
Our goal is to accommodate a good user experience, potentially
borrowing against future periods of idleness, without leaving the
device open to exploit. We refine the policy with two notions: daily
quotas and slack.

We first refine the policy by dividing B for the remaining life
into base bandwidth (B̂) and slack bytes (S). We set S at 50% ofW
by default, which reduced B to B̂ = 0.73MiB/s. Once the apps have
collectively reached bandwidth B̂ they may still write an additional
S bytes to disk before I/O is throttled.

Second, we apportion slack into equal, per-day quotas Sday . For
a device with L = 2 years, Sday ≈ 61.72 GiB in case of our S6 device.
This parameter should easily suffice for the typical case where a
user operates apps for an average two hours a day and no malicious
apps are installed. Underutilized portions of Sday are accumulated
and re-distributed to the Sday values of the remaining days.

Without per-day slack, a single app could drain all of the slack for
the lifespan of the device, leading to a potential denial-of-service
attack for any app (or combination of apps) whose throughput
is larger than B̂. This is true for malicious apps, but also for any
app violating our usage assumptions. For example, a user playing
Final Fantasy for more than 9 hours a day on the S6 device would
consume S before L, the two-year warranty period.

To exemplify how these thresholds work in more intensive usage
scenarios, consider two edge cases for high-throughput apps. First,
consider a camera app which takes an exuberant 3K photos a day.
Assuming each picture occupies ∼5 MiB of storage, the camera app
would still yield an average 0.17 MiB/s throughput, for an overall
consumption of 14.65 GiB a day—well below B̂ when averaged over
the course of a day. If the user were to take all 3K photos in a rapid-
fire burst of, say, 120 seconds, the instantaneous throughput would
be 125 MiB/s, which could violate our daily threshold; however, this
would fit comfortably within daily slack. As a second case, consider
an intensely avid gamer playing Final Fantasy for four hours daily;
the gamer consumes 53.86 GiB of daily writes. Both I/O-intensive
apps would operate in these cases without fully utilizing the daily
slack and would neither disrupt user experience nor risk damage
to the device.

In contrast, a malicious app operating at the maximum through-
put of 160 MiB/s will drain Sday within 15 minutes. At this point,
bandwidth that all apps can issue will be throttled to B̂, until Sday
is replenished.

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

Var. Meaning (default value for Samsung S6 32GB)
W Estimated total lifetime device write (88 TiB)
L Warrantied device lifetime (2 years)
S =W /2, slack capacity for burst I/O (44 TiB)
B̂ = (W − S)/L, base bandwidth (0.73 MiB/s)
Sfg Per day slack capacity for foreground apps (61.72 GiB)
Sbg Per hour slack capacity for background apps (2.57 GiB)

Table 3: Parameters (Var.) used in wear management policy.

User Discretion and Malicious Apps. Typical users only operate
apps for two hours a day [33, 49], making it highly unlikely for
benign apps to wear out the device in the common case. In the absence
of a malicious app, our rate limiting mechanism is not activated,
even in extreme cases where benign, I/O-intensive apps are used
over much longer periods. However, benign apps may still wear-out
the device if they issue a sufficiently heavy volume of write I/Os.

Indiscriminately throttling I/O can result in a false positive identi-
fication of a wear-out attack. Moreover, we suspect that any heuris-
tic that tries to automatically differentiate benign dangerous use
from malicious dangerous use may simply lead malicious apps to
operate just below the detection threshold.

Thus, the decision whether to allow dangerous I/O behaviors
is better left to the user. This approach has precedents, such as
services on Samsung devices [3] that alert users for computationally
intensive apps that may drain the battery faster than expected, as
well as slow down the device.

To assist the user in making this decision, our system tracks
each app’s I/O activity. Whenever an app utilizes a pre-determined
watermark threshold ofWmark = 0.5 × Sday (30.86 GiB in our S6
device) our system warns the user that some apps are wearing out
the storage device. The system then lists the daily top I/O consuming
apps. The user can then limit I/O-consuming apps to a safe rate (e.g.,
B̂/NumApps), or let them continue to exhaust the slack with user’s
consent. When an app is allowed to run without any rate limiting,
it still consumes slack for other apps, in the interest of preserving
overall lifespan.

Finally, we proportionally add unused B̂ portions to Sday and
Wmark , giving I/O-intensive apps more slack leeway after long pe-
riods of inactivity. Malicious apps operating at full speed will still
be detected, while studiously remaining above the watermark still
caps a malicious app at 50% of the adjusted Sday .

Differentiating foreground and background apps. Our measure-
ments in §5.4 indicate that when benign apps are running in the
background, the apps are less I/O-intensive than when running in
the foreground. Meanwhile, our WAPP in §4 heavily relies on back-
ground I/O to stealthily carry out the attack. So we can improve
the policy by detecting apps’ foreground/background status, and
treating each app differently depending on its status.

Our basic approach is to monitor slack usage at different granu-
larities for foreground and background apps; slack usage for back-
ground apps is tracked at an hourly granularity, rather than daily.
This approach bounds the amount of slack a malicious background
app can consume before it is rate limited, on the assumption that a
benign app should not issue this many writes in background mode.

More formally, foreground apps may use the daily slack (Sday);
background apps may only use hourly slack (Sbg = Sfg/24), which
is roughly 2.57 GiB on our running example S6 device. Similarly,
the threshold to warn the user about excessive slack consumption
is prorated differently for foreground and background apps. Each
app’s foreground/background status is available via Android activ-
ity stack, and, based on this status, our modified Android policy
applies either foreground or background threshold values for that
app. Thus, a malicious app in the background will hit the lower
background threshold sooner, reducing potential harm to normal
apps. At the end of each hour, any leftover hourly slack in Sbg is
reclaimed and re-appropriated according to the current value of
Sfg . Algorithm 1 details our monitoring policy.

Multiple Malicious Apps. Our analysis to date has assumed that
one malicious app would issue an adversarial amount of I/O. The
user is warned when one app consumes more than a configurable
watermark of slack usage (W fg

mark = 0.5 × S , or half of the slack
by default). One could imagine trying to evade this warning, or
confuse the user, by spreading the malicious load across multiple
coordinating apps.

At a minimum, our design warns the user whenever 75% of
Sfg is consumed, so that she is aware that the device’s lifetime
is being consumed in an alarming rate, and can look at list of
processes, ordered by I/O activity. One can also setW lower to
increase sensitivity, perhaps at a cost of more queries to the user.

6.2 Implementation
We implement a wear management defense on the Samsung S6
with Android 6.0.1. This defense includes an extension to Linux
kernel version 3.10.101, which tracks application I/O behavior, as
well as a policy executor that can dynamically apply a configurable
write-limiting policy. We track per-process writes and export this
data via /proc. We use the Android notion of an App ID to correlate
aggregate writes for an app across multiple process instantiations.
Specifically, for each app, the kernel exports two values to /proc: (1)
DataWritten, the total I/O written by the app, and (2) Bandwidthapp ,
the app’s last observed per-second I/O bandwidth usage. Notably,
a similar I/O monitoring mechanism tracking total individual app
I/O was recently added to the Android kernel [29]. The policy
executor tracks DataWritten and Bandwidthapp values for all apps,
and configures a rate-limiting policy, defaulting to what is described
in §6.1. When necessary, rate limiting can be applied to all processes
related to an app. In newer Linux kernels (4.5 or newer), cgroups
v2 [83] includes native support for I/O rate limiting, obviating the
need for our kernel changes; however, the phones we experimented
with did not support such new kernels in Android.

6.3 Defense Evaluation
We evaluate the effectiveness of our mechanism in the presence
of malicious apps, as well as its performance impact. We ran our
experiments on a Samsung S6 phone, together with Android 6.0.1
on top of our Linux kernel variant based on version 3.10.101. The
phone has 32 GB of UFS storage, running the Ext4 filesystem [24].
The relevant parameters used for this device are L = 2 years and
W = 88 TiB, based on measurements in §3.

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

Algorithm 1:Wear management policy
1 Monitor(Apps, L,W);
Input :Set of installed apps, Lifetime guarantee, Max. write

volume of flash storage device
2 S ←W × 0.5;
3 foreach day in L do
4 Sfg ←

S
Days left in L ;

5 S ← S − Sfg ;
6 W

fg
mark ← Sfb × 0.5;

7 L← L − 1 day;
8 B̂← W −S

L ;
9 reset all apps daily I/O counters;

10 foreach hour in day do
11 Sbg ←

Sfb
Hours left in day ;

12 Sfg ← Sfg − Sbg ;
13 W

bg
mark ← Sbg × 0.5;

14 foreach second t in hour do
15 Rt ← total I/O rate in t ;
16 R

bg
t ← total background I/O rate in t ;

17 R
fg
t ← total foreground I/O rate in t ;

18 W ←W − Rt ;
19 foreach x in Apps do
20 if Rt > B̂ then
21 Update x .state to fg or bg;
22 x .slkx .state ←

x .slkx .state + (Rt − B̂) × x .rate
Rt ;

23 if x .slkx .state >W x .state
mark then

24 alert user to rate limit x ;
25 end

26 Sfg ← Sfg − R
fg
t + B̂;

27 Sbg ← Sbg − R
bg
t + B̂;

28 if Rt < B̂ then
29 W

fg
mark ←W

fg
mark + (B̂ − Rt) × 0.5;

30 if total daily consumption
initial Sfg

> 0.75 then
31 alert user on lifetime consumption rate;
32 end
33 Sfg ← Sfg + Sbg ;
34 end
35 S ← S + Sfg ;
36 end

Our setup emulates common usage scenarios, where the phone
is either (a) running one I/O-intensive app in the foreground, such
as Camera or Final Fantasy, or (b) idle with some background activ-
ities. The phone is loaded with popular apps of different categories,
including Spotify, Facebook, Gmail, and Chrome. In most cases, the
apps’ background activities are negligible, except that some apps
might handle asynchronous events; for example, instant messaging
apps may become active upon incoming messages. Here, we pick

three scenarios to demonstrate the effectiveness of our wear man-
agement policy while inducing negligible interference on benign
apps.

The first scenario uses the Camera app to shoot a video clip. The
Camera app in our Samsung S6 will automatically stop the video
capture after 5 minutes. An I/O activity trace of this scenario over 6
minutes is illustrated in Figure 7a. The average write throughput is
∼7 MiB/s; if the user continues shooting video with the Camera app,
it will take over 1.2 hours to reachW fg

mark , at which point user will be
alerted and the Camera app be rate limited or permission to exceed
the limit is explicitly granted by the user. The I/O trace also shows
a few spikes, notably from system processes, GMS (Google Mobile
Service, detailed in next paragraph) and the Chrome browser. These
are commensurate to normal background activities of benign apps,
as measured in §5.

The second scenario involves Google Hangouts running in the
background, but with one incoming message every 5 seconds. The
write throughput is shown in Figure 7b. One interesting observa-
tion is that this activity involves not only the Hangouts app, but
also the GMS service. GMS is a set of preset apps and essential
service frameworks that can be used by apps[12]. FCM (Firebase
Cloud Messaging, formerly Google Cloud Messaging), one of the
services provided by GMS, is widely used by instant messaging and
email clients, including Google Hangouts, for message/notification
delivery [14, 17]. So the Hangouts app together with GMS processes
stand out hand in hand in this 6 minutes I/O trace. However, their
combined I/O throughput only adds up to ∼300 KiB/s, which is just
below theW bg

mark if it keeps receiving messages continuously for
the whole hour.

The third scenario adds the maliciousWAPP, which spikes out to
around 70 MiB/s (Figure 7c). Our wear management policy reacts
within 30 seconds and throttles the malicious app to a safe rate.

Finally, we evaluated the performance overhead of our moni-
tor on multiple write-intensive micro-benchmarks using Andro-
bench [89], including all major I/O access patterns (random/sequen-
tial, read/write) as well as repeated accesses to an SQLite database.
We compared the results of the micro-benchmarks on an Android
kernel 3.10.101 with and without our write tracking changes. Our
results show that any differences in performance do not display
specific trends and are within experimental noise. We omit detailed
results in the interest of brevity.

6.4 Write Amplification
Some I/O patterns, most notably random writes, tend to cause write
amplification (WA) at the firmware level (§2). Thus, a malicious app
could potentially circumvent our baseline rate limiting policy by
issuing write patterns that maximize WA with significantly lower
host-level write bandwidth.

To demonstrate the destructive potential of this enhanced attack,
wemodified ourWAPP application to first fill all of the free space left
on the device with a large file. The malicious app then continues to
rewrite this file using small 4 KiB randomwrites. Ourmeasurements
show that the modified WAPP only required 18 hours and 112 GiB
worth of host-level writes to increment the lifetime indicator, i.e.,
WAF = 80. The resulting I/O rate of only 1.7 MiB/s (1% of the
device’s maximum throughput) is similar to that of many benign

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

0 50 100 150 200 250 300 350
Time (Seconds)

0

2

4

6

8

10

12

14

Th
ro
ug

hp
ut

(M
iB
/s
)

GMS
Chrome
Camera
Other (43 apps)

(a) Write throughput of video recording in the foreground with the
Camera app, over a 5 minute period.

0 50 100 150 200 250 300 350
Time (Seconds)

0

1

2

3

4

5

6

Th
ro
ug

hp
ut

(M
iB
/s
)

SYSTEM
GMS
Google Hangouts
Other (48 apps)

(b)Write throughput of Hangouts, running in background mode, with
an incoming message every 5 seconds.

0 50 100 150 200 250 300 350
Time (Seconds)

0

20

40

60

80

Th
ro
ug

hp
ut

(M
iB
/s
)

[malicious]
Throttled GMS

Chrome
[malicious]
Other (10 apps)

(c) Write throughput over time with the malicious app running in
background. The throughput drops when the malicious app is rate
limited.

Figure 7: I/O trace under wear management policy.

apps and only slightly higher than the device’s B = 1.46 MiB/s. As
a comparison, to increment the indicator by 1, the original WAPP
requires as much as 2000 GiB of host-level writes, but less than
10 hours at a much higher I/O rate of ∼70 MiB/s. Similar tests on
the external eMMC cards yielded a smaller WAF of 7–8x, most
likely attributable to having an additional high-endurance flash

landing zone. To avoid detecting the malicious app by its high space
utilization, the malicious app could temporarily delete its files when
the display is on. Notably, the effect of write amplification hinges on
the amount of free space in the device, which effectively serves as
additional over-provisioned space. Consequently, per-app storage
space quotas may be used to impede this kind of attack.

Ideally, our model could account for write amplification by track-
ing physical writes, rather than logical writes. Unfortunately, most
mobile devices do not directly report physical writes. Without reli-
able, fine-grain wear indicators or knowledge of the inner-workings
of a device’s specific firmware, one must infer write amplification.
Specifically, workloads with a high degree of locality are less likely
to induce write amplification. Furthermore, WA is strongly and
inversely correlated to the amount of free, or over-provisioned,
space in the system [52]. By taking into account the amount of free
space and estimating the locality of each request using a technique
such as in LAST [95], which classifies the locality of I/O requests
according to their size, we can estimate the WAF and lower the
expected number of logical writes (W) over the device’s lifespan.

To conclude, an attacker may further deploy the wear-out attack
using harmful, flash-specific, and maliciously shaped I/O workloads.
We leave the exploration of a more refined, write-efficient wear-out
attack and defense as future work.

7 FUTURE OF MOBILE STORAGE
Although this paper focuses on smart phones, the problems de-
scribed in this paper are applicable to any device that has high
bandwidth and low capacity storage with relatively low endurance.
This includes wearables [119, 128, 135, 139] and IoT devices [75],
which present attackers with a plethora of small-capacity non-
volatile storage devices. There is a region where this trade-off is
less of a problem. High-capacity SSD devices will require long peri-
ods of time to wear out, even under consistently strenuous write
workloads. However, phone designers need to be cognizant of the
potential danger of this trade-off, as mobile storage devices are
likely to continue combining high bandwidth [21, 78] with smaller
storage capacities when compared to their full-fledged SSD coun-
terparts. It is easy to envision a future where mobile storage devices
remain in a bad point in the bandwidth/endurance trade-off space.

We also note that users find increasingly creative ways to use
smartphones for other purposes, such as Wi-Fi hotspots, servers,
or security cameras [81, 118, 148]. This trend is likely to continue
as users accumulate older phones with low resale value. Some
of these usages could be considered normal use cases, such as
parents occasionally using smartphones as baby monitors for short-
periods, or repurposing an older phone for this purpose. We leave
the exploration of such use cases as future work.

Our proposed attack has implications for future storage tech-
nologies as well—the key issues are the same as 2D, or planar
flash—including overall write endurance per cell, the amount of
over-provisioning, and the time it would take to write a lifetime’s
worth of data on the device. 3D flash [104, 121] stacks flash cell
layers on top of each other to form denser flash devices; current 3D
flash improves endurance and performance over planar flash. How-
ever, future 3D flash generations are predicted to suffer from similar

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

performance and reliability issues as those of their planar prede-
cessors [43], as newer generations likely adopt known techniques
that trade endurance for higher density and capacity.

Another important trend is the introduction of rival non-volatile
memory technologies (NVM) [143] such as Phase-Change Mem-
ory (PCM) [85, 98, 105, 113, 138]. PCM promises significant im-
provements over flash in both bandwidth and endurance [91, 153].
Higher-bandwidth devices can be worn out faster by a malicious
app. On the other hand, higher endurance of the underlying storage
media means that a successful wear-out attack must issue larger
volumes of writes. Thus, it is too early to say specifically how vul-
nerable PCM and other upcoming NVM technologies will be to this
attack.

8 RELATEDWORK
Flash/Android storage analysis. A long series of studies have ex-

amined whether durability and reliability of flash-based storage is a
problem, as each generation of device is a moving target. Some stud-
ies raise concerns around the trend to sacrifice durability for density
and lower cost [43, 62, 67]. Some have argued that the endurance
of flash storage is sufficient for common-case, realistic workloads,
especially with the help of wear-leveling techniques [42, 106, 125].
Meza et al. also demonstrate that flash durability is affected by
factors like internal buffering, wear leveling, and controllers [103].

A large body of work is dedicated to modeling and improving
flash device response times by improving garbage collection [146],
device-level parallelism [47, 60, 70, 71], and using flash-aware sched-
ulers [87, 112, 127]. However, these works mostly focus on improv-
ing request response times rather than estimating the wear effect
of individual requests and applications.

Several studies [50, 63, 109] recently explored the I/O activity of
Android applications. However, their measurements focused on the
effect of I/O on app responsiveness and user experience.

Flash and Mobile I/O attacks. This work continues the theme of
Prabhakaran et al. [114], who previously identified the importance
of adjusting the storage stack for systems with “depletable storage”,
such as NAND flash. They proposed that flash P/E cycles be tracked,
attributed and appropriated to specific applications by assigning
“write credits”, but did not implement, nor evaluate, mechanisms
to limit the consumption of flash P/E cycles. The authors of GAN-
GRENE [130] demonstrated the potential for a WAPP-like attack
on small USB sticks in a desktop environment. We expand these
attacks in a mobile environment, investigate how benign apps can
also wear out the device and explore ways to defend against this
phenomenon. Our prior work establishes wear-out as a problem
with preliminary data [150]; this paper expands this motivating
data on the problem, and proposes a solution, based on a thorough
characterization of normal application behavior.

Exhausting depletable resources. The closest works to ours ex-
plore attacks on the lifetime of PCM-based RAM alternatives. Like
flash, PCM cells can also endure only a limited number of writes,
typically 107. Therefore, wear-leveling is also employed in PCM
management [115, 151, 153]. Many works explored PCM wear out
attacks and mitigation [72, 101, 116, 117, 126, 141]. However, these

attacks often exploit specific properties of PCM, or rely on out-of-
band knowledge of the wear-leveling implementation. Furthermore,
PCM supports in-place writes and access units much smaller than
flash (e.g., 64B). The ensuing simpler nature of PCM management
schemes can make them more vulnerable to manipulations that
repeatedly write data to the same physical location.

The closest work to this paper, in terms of in managing flash
lifetime, is by Lee et al. [94], who explore techniques to limit writes
in order to ensure that enterprise SSDs meet their expected life-
time. However, their work focuses on enterprise workloads, does
not handle malicious workloads, uses system-level write through-
put throttling, and utilizes flash-level behaviors which may not be
applicable in newer memories [100].

The closest work in OS support for managing a depletable re-
source is managing power for mobile devices and applications [9,
9, 11, 11, 20, 51, 56, 68, 96, 99, 102, 111, 142, 149]. Unfortunately,
approaches to managing power cannot be applied directly to flash
since, unlike power, flash lifetime is a non-renewable resource,
whose consumption is only reported by mobile devices at coarse
granularity and typically obfuscated by firmware-specific propri-
etary details. DefDroid [73] protects against overuse of battery, as
well as storage, but is disabled when “the device is being charged
and connected to WiFi”.

9 CONCLUSIONS
Mobile OSes assume, often incorrectly, that it is safe to allow apps
to issue unconstrained writes to the device. Our results show that
the ratio of bandwidth to capacity in the underlying device is often
dangerously skewed, especially in the presence of less sophisti-
cated firmware and simpler supporting hardware. We demonstrate
how this can be corrected at the system software level with a care-
fully designed rate-limiting algorithm and configuration, without
disrupting normal behavior.

This paper focuses on smartphones, but we believe the same
issues apply to any small, flash-based devices on which third-party
software can be loaded, potentially including critical infrastructure
or internet-connected medical devices. The continuing proliferation
of IoT and embedded devices to everyday life presents new oppor-
tunities to attack high-bandwidth, flash-based, storage devices with
relatively small capacity that can be maliciously worn-out.

ACKNOWLEDGMENTS
We thank our shepherd, Mary Baker, and the anonymous reviewers
for their insightful comments on earlier drafts of the work. This
research was supported in part by a grant from the United States-
Israel Binational Science Foundation (BSF), Jerusalem, Israel, grant
2017702; the United States National Science Foundation (NSF)
grant # CNS-1816263; VMware; and the Technion Hiroshi Fujiwara
cyber security research center and the Israel cyber directorate.

REFERENCES
[1] 2011. Android Alarm Manager. Android.com, https://developer.android.com/

reference/android/app/AlarmManager.
[2] 2015. Android UI Automator. Android.com, https://developer.android.com/

training/testing/ui-automator.
[3] 2016. Samsung Smart Manager. Samsung.com, https://www.samsung.com/

global/galaxy/what-is/smart-manager/.

https://developer.android.com/reference/android/app/AlarmManager
https://developer.android.com/reference/android/app/AlarmManager
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://www.samsung.com/global/galaxy/what-is/smart-manager/
https://www.samsung.com/global/galaxy/what-is/smart-manager/

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

[4] 2017. Background Execution Limits. Android.com, https://developer.android.
com/about/versions/oreo/background.

[5] 2017. BLU Advance 4.0L. Amazon.com, https://www.amazon.com/
BLU-Advance-4-0L-Unlocked-Smartphone/dp/B00YCTIL88.

[6] 2017. BLU Dash D171a. Amazon.com, https://www.amazon.com/
BLU-Dash-D171a-Unlocked-White/dp/B00F9AK2D6.

[7] 2017. fio benchmarking tool. https://github.com/axboe/fio.
[8] 2017. Motorola Moto E LTE. Amazon.com, https://www.amazon.com/

Motorola-Moto-LTE-Contract-Cellular/dp/B00XQVDW6Y.
[9] 2017. Power Profiles for Android. Android.com, https://source.android.com/

devices/tech/power/.
[10] 2017. Samsung Galaxy S6. Amazon.com, https://www.amazon.com/

Samsung-Galaxy-S6-Factory-Unlocked/dp/B0143NXM68.
[11] 2017. Sensors power consumption. Android.com, https://source.android.com/

devices/sensors/.
[12] 2018. Android – Google Mobile Services. Android.com, https://www.android.

com/gms/.
[13] 2018. DiskBench on the App Store. App Store – Apple, https://itunes.apple.

com/us/app/diskbench/id1166519285.
[14] 2018. Engage your users across Android, iOS and Chrome. Google.com, https:

//developers.google.com/cloud-messaging/.
[15] 2018. Google Pixel 3 Smartphone Review. NotebookCheck.net, https://www.

notebookcheck.net/Google-Pixel-3-Smartphone-Review.366326.0.html.
[16] 2018. Motorola Moto G6 Smartphone Review. NotebookCheck.net, https://www.

notebookcheck.net/Motorola-Moto-G6-Smartphone-Review.303202.0.html.
[17] 2019. Firebase Cloud Messaging. Google.com, https://firebase.google.com/docs/

cloud-messaging/.
[18] 2019. Samsung Galaxy S9. Amazon.com, https://www.amazon.com/

Samsung-SM-G960F-5-8-inches-Factory-Unlocked/dp/B079SQ5VHX.
[19] Nitin Agrawal, Vijayan Prabhakaran, TedWobber, John D. Davis, Mark Manasse,

and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In USENIX
Annual Technical Conference (ATC).

[20] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Feng Xia, and
Muhammad Shiraz. 2015. A Review on mobile application energy profiling:
Taxonomy, state-of-the-art, and open research issues. Journal of Network and
Computer Applications 58, Supplement C (2015), 42 – 59.

[21] anand-nvme2015 2015. iPhone 6s and iPhone 6s Plus Prelimi-
nary Results. Anandtech, https://www.anandtech.com/show/9662/
iphone-6s-and-iphone-6s-plus-preliminary-results.

[22] Anandtech.com. Apr. 2013. Samsung Galaxy S4 Review -Part 1. https://www.
anandtech.com/show/6914/samsung-galaxy-s-4-review/6.

[23] Anandtech.com. Apr. 2014. Samsung Galaxy S5 Review. https://www.anandtech.
com/show/7903/samsung-galaxy-s-5-review/7.

[24] Anandtech.com. Apr. 2015. The Samsung Galaxy S6 and
S6 Edge Review. https://www.anandtech.com/show/9146/
the-samsung-galaxy-s6-and-s6-edge-review/7.

[25] Anandtech.com. Jul. 2017. Samsung Galaxy S8 Showdown: Exynos 8895 vs.
Snapdragon 835, Performance & Battery Life Tested. https://www.anandtech.
com/show/11540/samsung-galaxy-s8-exynos-versus-snapdragon/3.

[26] Anandtech.com. Mar. 2016. The Samsung Galaxy S7 & S7 Edge Review, Part 1.
https://www.anandtech.com/show/10120/the-samsung-galaxy-s7-review/3.

[27] Android.com. 2016. Application security. https://source.android.com/security/
overview/app-security.html#how-users-understand-third-party-applications.

[28] Android.com. 2017. Android Practices for Security and Privacy. https://developer.
android.com/training/articles/security-tips.html#StoringData.

[29] Android.com. 2017. Flash Wear Management in Android Automotive. https:
//source.android.com/devices/tech/perf/flash-wear.

[30] Android.com. Accessed Apr. 2018. Keeping the Device Awake. https://developer.
android.com/training/scheduling/wakelock.html.

[31] Android.com. Accessed Apr. 2018. Monitoring the Battery Level and Charg-
ing State. https://developer.android.com/training/monitoring-device-state/
battery-monitoring.html.

[32] Android.com. Accessed Apr. 2018. UI/Application Exerciser Monkey. https:
//developer.android.com/studio/test/monkey.html.

[33] annie-usage Accessed Apr. 2018. Spotlight on Consumer App Us-
age. App Annie, https://www.appannie.com/en/insights/market-data/
global-consumer-app-usage-data/.

[34] Apple.com. 2017. iOS App Sandbox Design Guide. https:
//developer.apple.com/library/content/documentation/Security/Conceptual/
AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html.

[35] ARS-ANDR8 2017. Android 8.0 Oreo, thoroughly reviewed. Arstechnica, https:
//arstechnica.com/gadgets/2017/09/android-8-0-oreo-thoroughly-reviewed/4.

[36] ArsTechnica. 2014. Consumer-grade SSDs actually last a
hell of a long time. https://arstechnica.com/gadgets/2014/06/
consumer-grade-ssds-actually-last-a-hell-of-a-long-time/.

[37] SD Association. 2000. SD Standard Overview. https://www.sdcard.org/
developers/overview/index.html.

[38] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS).

[39] Avraham Ben-Aroya and Sivan Toledo. 2006. Competitive Analysis of Flash-
memory Algorithms. In Proceedings of the 14th Conference on Annual European
Symposium - Volume 14 (ESA). 100–111.

[40] Betanews. 2014. Modern SSDs can last a lifetime. https://betanews.com/2014/
12/05/modern-ssds-can-last-a-lifetime/.

[41] Richard E. Blahut. 2003. Algebraic Codes for Data Transmission:. Cambridge
University Press. https://doi.org/10.1017/CBO9780511800467

[42] Simona Boboila and Peter Desnoyers. 2010. Write Endurance in Flash Drives:
Measurements and Analysis. In Proceedings of the 8th USENIX Conference on
File and Storage Technologies (FAST).

[43] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, andO.Mutlu. 2017. Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives. Proc. IEEE
105, 9 (Sept 2017), 1666–1704.

[44] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. 2013. Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation. In
IEEE 31st International Conference on Computer Design (ICCD). 123–130. https:
//doi.org/10.1109/ICCD.2013.6657034

[45] Hong Cao and Miao Lin. 2017. Mining smartphone data for app usage prediction
and recommendations: A survey. Pervasive and Mobile Computing 37 (2017), 1 –
22. https://doi.org/10.1016/j.pmcj.2017.01.007

[46] Li-Pin Chang. 2008. Hybrid solid-state disks: Combining heterogeneous NAND
flash in large SSDs. In Asia and South Pacific Design Automation Conference.
428–433. https://doi.org/10.1109/ASPDAC.2008.4483988

[47] Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal Parallelism of Flash
Memory-Based Solid-State Drives. Transaction on Storage 12, 3, Article 13 (May
2016), 39 pages.

[48] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-aware
Flash Translation Layer Enhancing the Lifespan of Flash Memory Based Solid
State Drives. In Proceedings of the 9th USENIX Conference on File and Stroage
Technologies (FAST).

[49] comscore 2017. The 2017 U.S. Mobile App Report. Comcast,
https://www.comscore.com/Insights/Presentations-and-Whitepapers/
2017/The-2017-US-Mobile-App-Report.

[50] J. Courville and F. Chen. 2016. Understanding storage I/O behaviors of mo-
bile applications. In 32nd Symposium on Mass Storage Systems and Technologies
(MSST).

[51] T. A. Dao, I. Singh, H. V. Madhyastha, S. V. Krishnamurthy, G. Cao, and P.
Mohapatra. 2017. TIDE: A User-Centric Tool for Identifying Energy Hungry
Applications on Smartphones. IEEE/ACM Transactions on Networking 25, 3 (June
2017), 1459–1474.

[52] Peter Desnoyers. 2012. Analytic Modeling of SSDWrite Performance. In Proceed-
ings of the 5th Annual International Systems and Storage Conference (SYSTOR).

[53] Peter Desnoyers. 2013. What Systems Researchers Need to Know about
NAND Flash. In Presented as part of the 5th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage). https://www.usenix.org/conference/
hotstorage13/workshop-program/presentation/desnoyers

[54] Devicespecifications.com. Mar. 2018. Samsung Galaxy S9 review. https://www.
devicespecifications.com/en/editor-review/b9e76e/8.

[55] G. Dong, N. Xie, and T. Zhang. 2011. On the Use of Soft-Decision Error-
Correction Codes in NAND Flash Memory. IEEE Transactions on Circuits and
Systems I: Regular Papers 58, 2 (Feb 2011), 429–439. https://doi.org/10.1109/
TCSI.2010.2071990

[56] Doze Accessed Apr. 2018. Optimizing for Doze and App Standby. An-
droid.com, https://developer.android.com/training/monitoring-device-state/
doze-standby.html.

[57] emarket 2017. eMarketer Unveils New Estimates for Mo-
bile App. eMarketer, https://www.emarketer.com/Article/
eMarketer-Unveils-New-Estimates-Mobile-App-Usage/1015611.

[58] Denzil Ferreira, Jorge Goncalves, Vassilis Kostakos, Louise Barkhuus, and
Anind K. Dey. 2014. Contextual Experience Sampling of Mobile Application
Micro-usage. In Proceedings of the 16th International Conference on Human-
computer Interaction with Mobile Devices & Services (MobileHCI).

[59] Eran Gal and Sivan Toledo. 2005. Algorithms and Data Structures for Flash
Memories. Computing Surveys 37, 2 (June 2005), 138–163. https://doi.org/10.
1145/1089733.1089735

[60] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H. M. Sha. 2014. Exploiting
parallelism in I/Os scheduling for access conflict minimization in flash-based
solid state drives. In 30th Symposium on Mass Storage Systems and Technologies
(MSST).

[61] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel, and
J.K. Wolf. 2009. Characterizing flash memory: Anomalies, observations, and
applications. In 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[62] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The Bleak Future of
NAND Flash Memory. In Proceedings of the 10th USENIX Conference on File and

https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://www.amazon.com/BLU-Advance-4-0L-Unlocked-Smartphone/dp/B00YCTIL88
https://www.amazon.com/BLU-Advance-4-0L-Unlocked-Smartphone/dp/B00YCTIL88
https://www.amazon.com/BLU-Dash-D171a-Unlocked-White/dp/B00F9AK2D6
https://www.amazon.com/BLU-Dash-D171a-Unlocked-White/dp/B00F9AK2D6
https://github.com/axboe/fio
https://www.amazon.com/Motorola-Moto-LTE-Contract-Cellular/dp/B00XQVDW6Y
https://www.amazon.com/Motorola-Moto-LTE-Contract-Cellular/dp/B00XQVDW6Y
https://source.android.com/devices/tech/power/
https://source.android.com/devices/tech/power/
https://www.amazon.com/Samsung-Galaxy-S6-Factory-Unlocked/dp/B0143NXM68
https://www.amazon.com/Samsung-Galaxy-S6-Factory-Unlocked/dp/B0143NXM68
https://source.android.com/devices/sensors/
https://source.android.com/devices/sensors/
https://www.android.com/gms/
https://www.android.com/gms/
https://itunes.apple.com/us/app/diskbench/id1166519285
https://itunes.apple.com/us/app/diskbench/id1166519285
https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/
https://www.notebookcheck.net/Google-Pixel-3-Smartphone-Review.366326.0.html
https://www.notebookcheck.net/Google-Pixel-3-Smartphone-Review.366326.0.html
https://www.notebookcheck.net/Motorola-Moto-G6-Smartphone-Review.303202.0.html
https://www.notebookcheck.net/Motorola-Moto-G6-Smartphone-Review.303202.0.html
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://www.amazon.com/Samsung-SM-G960F-5-8-inches-Factory-Unlocked/dp/B079SQ5VHX
https://www.amazon.com/Samsung-SM-G960F-5-8-inches-Factory-Unlocked/dp/B079SQ5VHX
https://www.anandtech.com/show/9662/iphone-6s-and-iphone-6s-plus-preliminary-results
https://www.anandtech.com/show/9662/iphone-6s-and-iphone-6s-plus-preliminary-results
https://www.anandtech.com/show/6914/samsung-galaxy-s-4-review/6
https://www.anandtech.com/show/6914/samsung-galaxy-s-4-review/6
https://www.anandtech.com/show/7903/samsung-galaxy-s-5-review/7
https://www.anandtech.com/show/7903/samsung-galaxy-s-5-review/7
https://www.anandtech.com/show/9146/the-samsung-galaxy-s6-and-s6-edge-review/7
https://www.anandtech.com/show/9146/the-samsung-galaxy-s6-and-s6-edge-review/7
https://www.anandtech.com/show/11540/samsung-galaxy-s8-exynos-versus-snapdragon/3
https://www.anandtech.com/show/11540/samsung-galaxy-s8-exynos-versus-snapdragon/3
https://www.anandtech.com/show/10120/the-samsung-galaxy-s7-review/3
https://source.android.com/security/overview/app-security.html#how-users-understand-third-party-applications
https://source.android.com/security/overview/app-security.html#how-users-understand-third-party-applications
https://developer.android.com/training/articles/security-tips.html#StoringData
https://developer.android.com/training/articles/security-tips.html#StoringData
https://source.android.com/devices/tech/perf/flash-wear
https://source.android.com/devices/tech/perf/flash-wear
https://developer.android.com/training/scheduling/wakelock.html
https://developer.android.com/training/scheduling/wakelock.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://www.appannie.com/en/insights/market-data/global-consumer-app-usage-data/
https://www.appannie.com/en/insights/market-data/global-consumer-app-usage-data/
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://arstechnica.com/gadgets/2017/09/android-8-0-oreo-thoroughly-reviewed/4
https://arstechnica.com/gadgets/2017/09/android-8-0-oreo-thoroughly-reviewed/4
https://arstechnica.com/gadgets/2014/06/consumer-grade-ssds-actually-last-a-hell-of-a-long-time/
https://arstechnica.com/gadgets/2014/06/consumer-grade-ssds-actually-last-a-hell-of-a-long-time/
https://www.sdcard.org/developers/overview/index.html
https://www.sdcard.org/developers/overview/index.html
https://betanews.com/2014/12/05/modern-ssds-can-last-a-lifetime/
https://betanews.com/2014/12/05/modern-ssds-can-last-a-lifetime/
https://doi.org/10.1017/CBO9780511800467
https://doi.org/10.1109/ICCD.2013.6657034
https://doi.org/10.1109/ICCD.2013.6657034
https://doi.org/10.1016/j.pmcj.2017.01.007
https://doi.org/10.1109/ASPDAC.2008.4483988
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/desnoyers
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/desnoyers
https://www.devicespecifications.com/en/editor-review/b9e76e/8
https://www.devicespecifications.com/en/editor-review/b9e76e/8
https://doi.org/10.1109/TCSI.2010.2071990
https://doi.org/10.1109/TCSI.2010.2071990
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://www.emarketer.com/Article/eMarketer-Unveils-New-Estimates-Mobile-App-Usage/1015611
https://www.emarketer.com/Article/eMarketer-Unveils-New-Estimates-Mobile-App-Usage/1015611
https://doi.org/10.1145/1089733.1089735
https://doi.org/10.1145/1089733.1089735

MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir

Storage Technologies (FAST). USENIX Association. http://dl.acm.org/citation.
cfm?id=2208461.2208463

[63] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee, Donguk Ryu, and Jihong
Kim. 2018. FastTrack: Foreground App-Aware I/O Management for Improving
User Experience of Android Smartphones. In 2018 USENIX Annual Technical
Conference (USENIX ATC).

[64] Hardkernel. 2017. ODROID | Hardkernel. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G145457216438.

[65] Mark A. Harris, Steven Furnell, and Karen Patten. 2014. Comparing
the Mobile Device Security Behavior of College Students and Informa-
tion Technology Professionals. Journal of Information Privacy and Secu-
rity 10, 4 (2014), 186–202. https://doi.org/10.1080/15536548.2014.974429
arXiv:http://dx.doi.org/10.1080/15536548.2014.974429

[66] Christoph Hellwig. 2017. Improving Block Discard Support throughout the
Linux Storage Stack. Vault Linux Storage and Filesystems Conference.

[67] Damien Hogan, Tom Arbuckle, and Conor Ryan. 2013. Estimating MLC NAND
Flash Endurance: A Genetic Programming Based Symbolic Regression Appli-
cation. In Proceedings of the 15th Annual Conference on Genetic and Evolution-
ary Computation (GECCO). ACM, 1285–1292. https://doi.org/10.1145/2463372.
2463537

[68] Mohammad Ashraful Hoque, Matti Siekkinen, Kashif Nizam Khan, Yu Xiao,
and Sasu Tarkoma. 2015. Modeling, Profiling, and Debugging the Energy Con-
sumption of Mobile Devices. ACM Comput. Surv. 48, 3, Article 39 (Dec. 2015),
40 pages.

[69] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.
2009. Write Amplification Analysis in Flash-based Solid State Drives. In Pro-
ceedings of The Israeli Experimental Systems Conference (SYSTOR). ACM, Article
10, 9 pages. https://doi.org/10.1145/1534530.1534544

[70] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren. 2013. Exploring and
Exploiting the Multilevel Parallelism Inside SSDs for Improved Performance
and Endurance. IEEE Trans. Comput. 62, 6 (June 2013), 1141–1155.

[71] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. 2011.
Performance Impact and Interplay of SSD Parallelism Through Advanced Com-
mands, Allocation Strategy and Data Granularity. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS).

[72] F. Huang, D. Feng, W. Xia, W. Zhou, Y. Zhang, M. Fu, C. Jiang, and Y. Zhou.
2016. Security RBSG: Protecting Phase Change Memory with Security-Level
Adjustable Dynamic Mapping. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[73] Peng Huang, Tianyin Xu, Xinxin Jin, and Yuanyuan Zhou. 2016. DefDroid:
Towards a More Defensive Mobile OS Against Disruptive App Behavior. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys).

[74] James Imgraben, Alewyn Engelbrecht, and Kim-Kwang Raymond Choo. 2014.
Always connected, but are smart mobile users getting more security savvy?
A survey of smart mobile device users. Behaviour & Information Technol-
ogy 33, 12 (2014), 1347–1360. https://doi.org/10.1080/0144929X.2014.934286
arXiv:http://dx.doi.org/10.1080/0144929X.2014.934286

[75] Intel. 2013. A guide to the internet of things. http://www.intel.com/content/
www/us/en/internet-of-things/infographics/guide-to-iot.html.

[76] Intel. 2017. Limited Warranties for Intel® Solid State Drives. Intel, http://www.
intel.com/content/www/us/en/support/solid-state-drives/000005861.html.

[77] JEDEC. 2015. JEDEC e.MMC standard v5.1. https://www.jedec.org/
standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/
e-mmc.

[78] JEDEC. 2016. JEDEC Universal Flash Storage (UFS) standard v2.1. http://www.
jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs.

[79] Sooman Jeong, Kisung Lee, Jungwoo Hwang, Seongjin Lee, and Youjip Won.
2013. AndroStep: Android Storage Performance Analysis Tool.. In Software
Engineering (Workshops), Vol. 13. 327–340.

[80] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won.
2013. I/O Stack Optimization for Smartphones. In Presented as part of the USENIX
Annual Technical Conference (USENIX ATC). USENIX, 309–320. https://www.
usenix.org/conference/atc13/technical-sessions/presentation/jeong

[81] D. A. Johnson and M. M. Trivedi. 2011. Driving style recognition using a
smartphone as a sensor platform. In 2011 14th International IEEE Conference on
Intelligent Transportation Systems (ITSC). 1609–1615. https://doi.org/10.1109/
ITSC.2011.6083078

[82] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting Widely Held SSD
Expectations and Rethinking System-level Implications. In Proceedings of the
ACM SIGMETRICS/International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS).

[83] Kernel.org. 2015. Control Group v2. https://www.kernel.org/doc/
Documentation/cgroup-v2.txt.

[84] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. 2012. Revisiting storage
for smartphones. ACM Transactions on Storage 8, 4 (November 2012), 1–25.

[85] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. 2014.
Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of
Caching and Tiering Approaches. Transactions on Storage 10, 4, Article 15 (Oct.
2014), 21 pages. https://doi.org/10.1145/2668128

[86] J. Kim, E. Lee, J. Choi, D. Lee, and S. H. Noh. 2016. Chip-Level RAID with
Flexible Stripe Size and Parity Placement for Enhanced SSD Reliability. IEEE
Trans. Comput. 65, 4 (April 2016), 1116–1130.

[87] J. Kim, E. Lee, and S. H. Noh. 2016. I/O Scheduling Schemes for Better I/O
Proportionality on Flash-Based SSDs. In IEEE 24th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS).

[88] J. M. Kim and J. S. Kim. 2012. Advil: A Pain Reliever for the Storage Performance
of Mobile Devices. In IEEE 15th International Conference on Computational Sci-
ence and Engineering (CSE). 429–436. https://doi.org/10.1109/ICCSE.2012.66

[89] Je-Min Kim and Jin-Soo Kim. 2012. AndroBench: Benchmarking the Storage
Performance of Android-BasedMobile Devices. Springer BerlinHeidelberg, Berlin,
Heidelberg, 667–674. https://doi.org/10.1007/978-3-642-27552-4_89

[90] Kingston. 2017. Class 4 microSDHC Card - 4GB–32GB | Kingston. https:
//www.kingston.com/us/flash/microsd_cards/sdc4.

[91] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory As a Scalable Dram Alternative. SIGARCH Computer
Architecture News 37, 3 (June 2009), 2–13. https://doi.org/10.1145/1555815.
1555758

[92] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015.
F2FS: A New File System for Flash Storage. In 13th USENIX Conference on
File and Storage Technologies (FAST). USENIX Association, 273–286. https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/lee

[93] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim.
2009. FlexFS: A Flexible Flash File System for MLC NAND Flash Memory. In
Proceedings of the Conference on USENIX Annual Technical Conference (USENIX).
1. http://dl.acm.org/citation.cfm?id=1855807.1855816

[94] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. 2012. Lifetime Man-
agement of Flash-Based SSDs Using Recovery-Aware Dynamic Throttling. In
In Proceedings of the Tenth USENIX Conference on File and Storage Technologies
(FAST).

[95] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. 2008. LAST:
Locality-aware Sector Translation for NAND Flash Memory-based Storage
Systems. SIGOPS Operating Systems Review 42, 6 (Oct. 2008), 36–42.

[96] Matthew Lentz, James Litton, and Bobby Bhattacharjee. 2015. Drowsy Power
Management. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP).

[97] LifeHacker. 2015. How Long Will My Hard Drives Really Last? LifeHacker,
http://lifehacker.com/how-long-will-my-hard-drives-really-last-1700405627.

[98] D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong,
and S. R. Elliott. 2012. Breaking the Speed Limits of Phase-Change Memory.
Science 336, 6088 (2012), 1566–1569. https://doi.org/10.1126/science.1221561
arXiv:http://www.sciencemag.org/content/336/6088/1566.full.pdf

[99] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem Choudhury, and
Andrew T. Campbell. 2010. The Jigsaw Continuous Sensing Engine for Mobile
Phone Applications. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems (SenSys).

[100] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, andO.Mutlu. 2018. HeatWatch: Improving
3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and
Temperature Awareness. In IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[101] Haiyu Mao, Xian Zhang, Guangyu Sun, and Jiwu Shu. 2017. Protect Non-
volatile Memory from Wear-out Attack Based on Timing Difference of Row
Buffer Hit/Miss. In Proceedings of the Conference on Design, Automation & Test in
Europe (DATE). European Design and Automation Association, 3001 Leuven, Bel-
gium, Belgium, 1627–1630. http://dl.acm.org/citation.cfm?id=3130379.3130758

[102] Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. 2015. Selectively Taming
Background Android Apps to Improve Battery Lifetime. In USENIX Annual
Technical Conference (USENIX ATC).

[103] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A Large-Scale
Study of Flash Memory Failures in the Field. SIGMETRICS Performance Evalua-
tion Review 43, 1 (June 2015), 177–190.

[104] Micron. 2015. 3D NAND. http://www.micron.com/products/nand-flash/
3d-nand.

[105] Micron. 2015. 3D XPoint Technology. https://www.micron.com/about/
emerging-technologies/3d-xpoint-technology.

[106] Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and Mircea R.
Stan. 2010. How I Learned to Stop Worrying and Love Flash Endurance. In Pro-
ceedings of the 2nd USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage). USENIX Association. http://dl.acm.org/citation.cfm?id=1863122.
1863125

[107] Alexios Mylonas, Anastasia Kastania, and Dimitris Gritzalis. 2013. Delegate the
smartphone user? Security awareness in smartphone platforms. Computers &
Security 34 (2013), 47 – 66. https://doi.org/10.1016/j.cose.2012.11.004

http://dl.acm.org/citation.cfm?id=2208461.2208463
http://dl.acm.org/citation.cfm?id=2208461.2208463
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
https://doi.org/10.1080/15536548.2014.974429
http://arxiv.org/abs/http://dx.doi.org/10.1080/15536548.2014.974429
https://doi.org/10.1145/2463372.2463537
https://doi.org/10.1145/2463372.2463537
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1080/0144929X.2014.934286
http://arxiv.org/abs/http://dx.doi.org/10.1080/0144929X.2014.934286
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://www.intel.com/content/www/us/en/support/solid-state-drives/000005861.html
http://www.intel.com/content/www/us/en/support/solid-state-drives/000005861.html
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.usenix.org/conference/atc13/technical-sessions/presentation/jeong
https://www.usenix.org/conference/atc13/technical-sessions/presentation/jeong
https://doi.org/10.1109/ITSC.2011.6083078
https://doi.org/10.1109/ITSC.2011.6083078
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://doi.org/10.1145/2668128
https://doi.org/10.1109/ICCSE.2012.66
https://doi.org/10.1007/978-3-642-27552-4_89
https://www.kingston.com/us/flash/microsd_cards/sdc4
https://www.kingston.com/us/flash/microsd_cards/sdc4
https://doi.org/10.1145/1555815.1555758
https://doi.org/10.1145/1555815.1555758
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
http://dl.acm.org/citation.cfm?id=1855807.1855816
http://lifehacker.com/how-long-will-my-hard-drives-really-last-1700405627
https://doi.org/10.1126/science.1221561
http://arxiv.org/abs/http://www.sciencemag.org/content/336/6088/1566.full.pdf
http://dl.acm.org/citation.cfm?id=3130379.3130758
http://www.micron.com/products/nand-flash/3d-nand
http://www.micron.com/products/nand-flash/3d-nand
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
http://dl.acm.org/citation.cfm?id=1863122.1863125
http://dl.acm.org/citation.cfm?id=1863122.1863125
https://doi.org/10.1016/j.cose.2012.11.004

Apps CanQuickly Destroy Your Mobile’s Flash MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea

[108] Iyswarya Narayanan, DiWang,Myeongjae Jeon, Bikash Sharma, Laura Caulfield,
Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra
Vaid. 2016. SSD Failures in Datacenters: What, When and Why? SIGMETRICS
Performance Evaluation 44, 1 (June 2016).

[109] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi, Zijiang Hao, Ge Peng, and
Qing Yang. 2015. Reducing Smartphone Application Delay Through Read/Write
Isolation. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys).

[110] Jon Oberheide and Charlie Miller. 2012. Dissecting the android bouncer. Sum-
merCon (2012).

[111] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.
2013. Carat: Collaborative Energy Diagnosis for Mobile Devices. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[112] Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler.
In Proceedings of the 10th USENIX Conference on File and Storage Technologies
(FAST).

[113] PCWorld. 2016. Intel experiments with 3D Xpoint as it ships out
SSDs to testers. http://www.pcworld.com/article/3098769/storage/
intel-experiments-with-3d-xpoint-as-it-ships-out-ssds-to-testers.html.

[114] Vijayan Prabhakaran, Mahesh Balakrishnan, John D. Davis, and Ted Wobber.
2010. Depletable Storage Systems. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Storage and File Systems (HotStorage).

[115] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B.
Abali. 2009. Enhancing lifetime and security of PCM-based Main Memory with
Start-Gap Wear Leveling. In 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[116] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini. 2011. Practical
and secure PCM systems by online detection of malicious write streams. In
IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA).

[117] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini. 2011. Practical
and secure PCM systems by online detection of malicious write streams. In
IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA).

[118] S. K. Ray, R. Sinha, and S. K. Ray. 2015. A smartphone-based post-disaster
management mechanism using WiFi tethering. In 2015 IEEE 10th Conference
on Industrial Electronics and Applications (ICIEA). 966–971. https://doi.org/10.
1109/ICIEA.2015.7334248

[119] Samsung. 2014. Wearable Mobile Devices. http://www.samsung.com/uk/
consumer/mobile-devices/wearables/.

[120] Samsung. 2017. SAMSUNG SSD Limited Warranty For All Samsung SSDs.
Samsung, http://www.samsung.com/semiconductor/minisite/ssd/downloads/
warranty/SAMSUNG_SSD_Limited_Warranty_English_US.pdf.

[121] Samsung. 2017. V-NAND Technology. Samsung, http://www.samsung.com/
semiconductor/products/flash-storage/v-nand/.

[122] Samsung.com. 2018. UK Mobile Device warranty. http://www.samsung.com/
uk/support/warranty/.

[123] Sandisk. 2017. Sandisk iNand Embedded Flash Drives. https://www.sandisk.
com/oem-design/mobile/inand.

[124] SanDisk. 2017. SanDisk Product Warranty. SanDisk, https://www.sandisk.com/
about/legal/warranty/warranty-table.

[125] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliability
in Production: The Expected and the Unexpected. In 14th USENIX Conference
on File and Storage Technologies (FAST). USENIX Association, 67–80. http:
//usenix.org/conference/fast16/technical-sessions/presentation/schroeder

[126] Nak Hee Seong, Dong HyukWoo, and Hsien-Hsin S. Lee. 2010. Security Refresh:
Prevent Malicious Wear-out and Increase Durability for Phase-change Memory
with Dynamically Randomized Address Mapping. In Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA).

[127] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs. In Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC).

[128] Microsoft Store. 2017. Wearable technology. https://www.microsoftstore.com/
store/msusa/en_US/cat/Wearable-technology/categoryID.67937000.

[129] The TechReport. 2015. The SSD Endurance Experiment: They’re
all dead. TechReport, http://techreport.com/review/27909/
the-ssd-endurance-experiment-theyre-all-dead.

[130] Robert Templeman and Apu Kapadia. 2012. GANGRENE: Exploring the Mortal-
ity of Flash Memory. In Proceedings of the 7th USENIX Conference on Hot Topics
in Security (HotSec).

[131] Toshiba. 2016. Product manual, SG5 client SSD series. Toshiba, https:
//toshiba.semicon-storage.com/content/dam/toshiba-ss/asia-pacific/docs/
product/storage/product-manual/SSD-SG5-Series-Brochure-Revision1.0.pdf.

[132] Toshiba. 2017. e·MMC™| TOSHIBA Storage & Electronic Devices Solutions Com-
pany. https://toshiba.semicon-storage.com/us/product/memory/nand-flash/
mlc-nand/emmc.html.

[133] Toshiba. 2017. Storage Products Warranty. Toshiba, http://toshiba.
semicon-storage.com/us/product/storage-products.html.

[134] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, andWenke Lee. 2013. Jekyll on
iOS: When Benign Apps Become Evil. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security). USENIX, 559–572. https://www.usenix.
org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei

[135] Information Week. 2016. 10 Medical-Device Wearables To Improve Patients’
Lives. http://www.informationweek.com/healthcare/mobile-and-wireless/
10-medical-device-wearables-to-improve-patients-lives/d/d-id/1323544.

[136] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012.
Permission Evolution in the Android Ecosystem. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC). ACM, New York,
NY, USA, 31–40. https://doi.org/10.1145/2420950.2420956

[137] Wikipedia. Accessed Apr. 2018. List of Intel SSDs. https://en.wikipedia.org/
wiki/List_of_Intel_SSDs.

[138] H.-S.P. Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change Memory.
Proc. IEEE 98, 12 (Dec 2010), 2201–2227. https://doi.org/10.1109/JPROC.2010.
2070050

[139] Computer World. 2016. Why ’invisible smart glasses’ are the per-
fect wearable. http://www.computerworld.com/article/3138534/wearables/
why-invisible-smart-glasses-are-the-perfect-wearable.html.

[140] Guanying Wu and Xubin He. 2012. Delta-FTL: Improving SSD Lifetime via
Exploiting Content Locality. In Proceedings of the 7th ACM European Conference
on Computer Systems (EuroSys). ACM, 253–266. https://doi.org/10.1145/2168836.
2168862

[141] G. Wu, H. Zhang, Y. Dong, and J. Hu. 2012. CAR: Securing PCM Main Memory
System with Cache Address Remapping. In IEEE 18th International Conference
on Parallel and Distributed Systems (ICPADS).

[142] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. 2015. Automated
OS-level Device Runtime Power Management. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[143] Chun Jason Xue, Youtao Zhang, Yiran Chen, Guangyu Sun, J. Jianhua Yang, and
Hai Li. 2011. Emerging Non-volatile Memories: Opportunities and Challenges.
In Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS). ACM, New York,
NY, USA, 325–334. https://doi.org/10.1145/2039370.2039420

[144] S. y. Park, E. Seo, J. Y. Shin, S. Maeng, and J. Lee. 2010. Exploiting Internal
Parallelism of Flash-based SSDs. IEEE Computer Architecture Letters 9, 1 (Jan
2010), 9–12. https://doi.org/10.1109/L-CA.2010.3

[145] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. 2015. Write Once, Get 50% Free:
Saving SSD Erase Costs Using WOM Codes. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST). USENIX Association, Berke-
ley, CA, USA, 257–271. http://dl.acm.org/citation.cfm?id=2750482.2750502

[146] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminatahan
Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi. 2017. Tiny-tail Flash:
Near-perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs.
In Proceedings of the 15th Usenix Conference on File and Storage Technologies
(FAST).

[147] Chengen Yang, Hsing-Min Chen, Trevor Mudge, and Chaitali Chakrabarti. 2014.
Improving the Reliability of MLC NAND Flash Memories Through Adaptive
Data Refresh and Error Control Coding. Journal of Signal Processing Systems
76, 3 (2014), 225–234. https://doi.org/10.1007/s11265-014-0880-5

[148] W. Yi, W. Jia, and J. Saniie. 2012. Mobile sensor data collector using Android
smartphone. In 2012 IEEE 55th International Midwest Symposium on Circuits and
Systems (MWSCAS). 956–959. https://doi.org/10.1109/MWSCAS.2012.6292180

[149] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang. 2010.
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[150] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. 2017. Flash drive
lifespan *is* a problem. In ACM Workshop on Hot Topics in Operating Systems
(HotOS).

[151] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy
efficient main memory using phase change memory technology. In Proceedings
of the Annual International Symposium on Computer Architecture (ISCA).

[152] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characteriza-
tion and evolution. In IEEE Symposium on Security and Privacy. IEEE, 95–109.

[153] Omer Zilberberg, ShlomoWeiss, and Sivan Toledo. 2013. Phase-change Memory:
An Architectural Perspective. ACM Comput. Surv. 45, 3, Article 29 (July 2013),
33 pages. https://doi.org/10.1145/2480741.2480746

[154] Aviad Zuck, Yue Li, Jehoshua Bruck, Donald E. Porter, and Dan Tsafrir. 2018.
Stash in a Flash. In 16th USENIX Conference on File and Storage Technologies
(FAST).

[155] Aviad Zuck, Sivan Toledo, Dmitry Sotnikov, and Danny Harnik. 2014. Compres-
sion and SSDs: Where and How?. In 2nd Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW).

http://www.pcworld.com/article/3098769/storage/intel-experiments-with-3d-xpoint-as-it-ships-out-ssds-to-testers.html
http://www.pcworld.com/article/3098769/storage/intel-experiments-with-3d-xpoint-as-it-ships-out-ssds-to-testers.html
https://doi.org/10.1109/ICIEA.2015.7334248
https://doi.org/10.1109/ICIEA.2015.7334248
http://www.samsung.com/uk/consumer/mobile-devices/wearables/
http://www.samsung.com/uk/consumer/mobile-devices/wearables/
http://www.samsung.com/semiconductor/minisite/ssd/downloads/warranty/SAMSUNG_SSD_Limited_Warranty_English_US.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/warranty/SAMSUNG_SSD_Limited_Warranty_English_US.pdf
http://www.samsung.com/semiconductor/products/flash-storage/v-nand/
http://www.samsung.com/semiconductor/products/flash-storage/v-nand/
http://www.samsung.com/uk/support/warranty/
http://www.samsung.com/uk/support/warranty/
https://www.sandisk.com/oem-design/mobile/inand
https://www.sandisk.com/oem-design/mobile/inand
https://www.sandisk.com/about/legal/warranty/warranty-table
https://www.sandisk.com/about/legal/warranty/warranty-table
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.microsoftstore.com/store/msusa/en_US/cat/Wearable-technology/categoryID.67937000
https://www.microsoftstore.com/store/msusa/en_US/cat/Wearable-technology/categoryID.67937000
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
https://toshiba.semicon-storage.com/content/dam/toshiba-ss/asia-pacific/docs/product/storage/product-manual/SSD-SG5-Series-Brochure-Revision1.0.pdf
https://toshiba.semicon-storage.com/content/dam/toshiba-ss/asia-pacific/docs/product/storage/product-manual/SSD-SG5-Series-Brochure-Revision1.0.pdf
https://toshiba.semicon-storage.com/content/dam/toshiba-ss/asia-pacific/docs/product/storage/product-manual/SSD-SG5-Series-Brochure-Revision1.0.pdf
https://toshiba.semicon-storage.com/us/product/memory/nand-flash/mlc-nand/emmc.html
https://toshiba.semicon-storage.com/us/product/memory/nand-flash/mlc-nand/emmc.html
http://toshiba.semicon-storage.com/us/product/storage-products.html
http://toshiba.semicon-storage.com/us/product/storage-products.html
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei
http://www.informationweek.com/healthcare/mobile-and-wireless/10-medical-device-wearables-to-improve-patients-lives/d/d-id/1323544
http://www.informationweek.com/healthcare/mobile-and-wireless/10-medical-device-wearables-to-improve-patients-lives/d/d-id/1323544
https://doi.org/10.1145/2420950.2420956
https://en.wikipedia.org/wiki/List_of_Intel_SSDs
https://en.wikipedia.org/wiki/List_of_Intel_SSDs
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
http://www.computerworld.com/article/3138534/wearables/why-invisible-smart-glasses-are-the-perfect-wearable.html
http://www.computerworld.com/article/3138534/wearables/why-invisible-smart-glasses-are-the-perfect-wearable.html
https://doi.org/10.1145/2168836.2168862
https://doi.org/10.1145/2168836.2168862
https://doi.org/10.1145/2039370.2039420
https://doi.org/10.1109/L-CA.2010.3
http://dl.acm.org/citation.cfm?id=2750482.2750502
https://doi.org/10.1007/s11265-014-0880-5
https://doi.org/10.1109/MWSCAS.2012.6292180
https://doi.org/10.1145/2480741.2480746

	Abstract
	1 Introduction
	2 Background
	3 Measuring Wear-Out
	3.1 Evaluation Setup
	3.2 Performance Characteristics
	3.3 External eMMC Wear-out
	3.4 Smartphone Wear-out

	4 Wear-out Attack
	4.1 Threat Model
	4.2 Implementation and Avoiding Detection
	4.3 Permissions and Capabilities

	5 Mobile App I/O Characterization
	5.1 Measurement Setup
	5.2 Popular Apps Characterization
	5.3 Write-heavy Applications
	5.4 Background I/O
	5.5 Discussion

	6 Managing Wear
	6.1 Wear Management Policy
	6.2 Implementation
	6.3 Defense Evaluation
	6.4 Write Amplification

	7 Future of Mobile Storage
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

