#### **Voltage source**

The following diagram shows the output curves of two voltage sources. The blue curve shows an ideal voltage source. In no-load operation (I=0A) it supplies  $U_t=25V$ . At full load (I=25A) it still supplies  $U_t=25V$ . The internal resistance  $R_i$  is  $0\Omega$  in this case.

The orange curve shows a real voltage source. In no-load operation (I=0A) it supplies also  $U_t=25V$ . At full load (I=25A), however, it supplies only  $U_t=20V$ . The internal resistance  $R_i$  in this case is  $\Delta U/\Delta I = 5V/25A = 0.2\Omega$ .

You can see that a voltage source is better when its internal resistance  $R_i$  is lower.



### **Current source**

The following diagram shows the output curves of two current sources. The blue curve shows an ideal current source. In no-load operation it supplies 25A. For a current source, the short circuit is the no-load condition, that is  $U_t=0V$ . At full load ( $U_t=25V$ ) it still delivers I=25A. The internal resistance  $R_i$  is infinitely high in this case ( $\infty \Omega$ ), so  $R_i$  is not present.

The orange curve shows a real current source. In no-load operation (U<sub>t</sub>=0V) it delivers also 25A. At full load (U<sub>t</sub>=25V), however, it delivers only 20A. The internal resistance R<sub>i</sub> in this case is  $\Delta U/\Delta I = 25V/5A = 5\Omega$ .

You can see that a <u>current source</u> is better if its internal resistance  $\underline{R_i}$  is higher.



#### **Real source**

The following diagram shows the curve of a supply. But what is it? Is it a voltage source or a current source?

You can say it is a voltage source. U<sub>0</sub> is 25V. The internal resistance R<sub>i</sub> is  $\Delta U/\Delta I = 25V/25A = 1\Omega$ .

But you can also say that it is a current source. Is is 25A. The internal resistance  $R_i$  is  $\Delta U/\Delta I = 25V/25A = 1\Omega$ .

And both assumptions are correct! Because you can convert real current sources into real voltage sources, and vice versa. Therefore, you can consider a source to be whatever you like. If the internal resistance is much higher than the load resistance, one would rather speak of a current source. If the internal resistance is much smaller than the load resistance, one would rather speak of a voltage source.



The conversion is done according to the following formulas:

$$U_0 = I_S \cdot R_i \qquad \Leftrightarrow \qquad I_S = U_0 / R_i$$

## **Real current source**

The following schematic shows a typical real current source.

At the left, it is connected to an unstabilised mains. This mains voltage is stabilised by a voltage stabilizer, see Technical Newsletter No. 17 for details. Afterwards, the voltage can be manually adjusted by means of an adjustable autotransformer. This voltage is then transformed down to a safe voltage by a LV ( $\underline{L}$ ow  $\underline{V}$ oltage) to SELV ( $\underline{S}$ afety  $\underline{E}$ xtra  $\underline{L}$ ow  $\underline{V}$ oltage) transformer.

Then you see 3 resistors.  $R_{i1}$  symbolises the internal resistance of the source, i.e. the voltage stabilisation and the two transformers. 100m $\Omega$  is a typical value.  $R_{i2}$  is an additional internal resistance that we will calculate later.  $R_{i3}$  is the resistance of the test setup. It includes not only the device under test but also the wiring. It is typically also around 100m $\Omega$ .



# Is R<sub>i2</sub> really needed?

Let's do an example calculation. Take  $R_{i1}$  with  $100m\Omega$ . We leave out  $R_{i2}$ , so it is  $0\Omega$ . Ri3 is  $80m\Omega$  at the beginning of the test (sample is cold). The test current should be 20A. Tr<sub>1</sub> must therefore be set so that Tr<sub>2</sub> supplies  $20A \cdot (100m\Omega + 80m\Omega) = 3.6V$ .

During the test, the test specimen changes as follows:

- Heating increases the resistance.

- As the temperature rises, the contact pressure decreases (relaxation), which also increases the resistance.

For example, the resistance  $R_{i3}$  increases from  $80m\Omega$  to  $100m\Omega$ . But this causes the current to drop from 20A to  $3.6V / (100m\Omega + 100m\Omega) = 18A!$ 

Now we use  $R_{i2}$  and select 5 $\Omega$ . We have to set the voltage at the output of  $Tr_2$  to  $20A \cdot (100m\Omega + 5\Omega + 80m\Omega) = 103.6V$  at the beginning of the test. If the resistance of the test object now increases to  $100m\Omega$ , the current drops from 20A to  $103.6V / (100m\Omega + 5\Omega + 100m\Omega) = 19.92A$ . The current is therefore much more constant!