Moin Nach einer Diskussion mit den Kollegen bin ich etwas verwirrt. Es geht um folgendes: Gemessen wird die Energiedifferenz eines Volumentroms in einer bestimmten Zeit. (vor und nach einem Radiator) Da alle Messwerte mit Unsicherheiten behaftet sind, bekommen wir (nach Gauß) solch ein Ergebnis: Q = 15 ± 0.2 kWh So weit, so unstrittig. Jetzt messen wir aber alle 30 Sekunden und würden gerne die Energie pro Stunde berechnen, inklusive der Unsicherheit. Wie aber gehen wir damit um: Unsicherheiten aufsummieren, arithmetisches oder quadratisches Mittel bilden? Im ersten Fall ist die Unsicherheit dann ja etwa so groß, wie in den Einzelmessungen, was (mMn) ja auch so sein muss. Bei der Mittelwertbildung über einen längeren Zeitraum "verschwindet" die Unsicherheit ja fast vollständig, was ja nicht real ist. Außerdem hätte dann ja die Unsicherheit noch eine Standardabweichung, deren Sinn sich mir auch nicht erklärt. Wir haben natürlich schon recherchiert, aber dieses (eigentlich doch recht simple) Beispiel nirgendwo gefunden. Vielleicht hat hier jemand eine Lösung mit kurzer Erklärung für uns. Danke und Gruß Kolja
Kolja L. schrieb: > Wie aber gehen wir damit um: > > Unsicherheiten aufsummieren, arithmetisches oder quadratisches Mittel > bilden? > > Im ersten Fall ist die Unsicherheit dann ja etwa so groß, wie in den > Einzelmessungen, was (mMn) ja auch so sein muss. Das hängt davon ab, wie zeitlich auflösend die Messereignisse sind (z.B. bei radioaktivem Zerfall hast du, wenn nur alle 10 Sekunden ein Zerfall registriert wird, bei 30 Sekunden Messdauer eine grosse Fehlerabweichung) aber euer Messvorgang ist kontinuierlich. Und davon, wie statistisch unabhängig eure Messungen sind. Wenn ein Radiator einen Raum 1 Stunde beheizt, der Raum durch den Heizvorgang wärmer wird, kann man aus den ersten 30 Sekunden ja nicht ermitteln wie warm der Raum hinterher wird. Wollt ihr aber vermutlich auch nicht, ihr wollt wohl nur die Momentanleistung der 30 Sekunden auf 1h hochrechnen, egal wie hoch der Heizeffekt in 30 Minaten real wäre und egal wie stark die Heizleistung in 30 Minuten real wäre (andere Konvektion, andere Wärmedifferenzen). Damit passt die einfache mathematische Fortschreibung ohne sich Gedanken um Auswirkungen des Heizens zu machen.
Du musst zwischen zufälligen und systematischen Fehlern unterscheiden: https://de.wikipedia.org/wiki/Richtigkeit Die Streuung wird durch Mitteln zwar kleiner, aber man kann trotzdem noch systematisch voll daneben liegen.
Kolja L. schrieb: > Bei der Mittelwertbildung über einen längeren Zeitraum "verschwindet" > die Unsicherheit ja fast vollständig, was ja nicht real ist Dabei geht man davon aus, dass der Messwert selbst stabil ist und zufällige Störungen auftreten - diese kann man ausmitteln. Aber eben nur bei konstantem Messwert und zufällig verteilten (!) Störungen. Also in eurem Fall nicht. Georg
Unsicherheiten aufsummieren! Das wars, ihr Summiert ja auch das Ergebniss. Der Relative Fehler der Summen [ Summe(Unsicherheit) / Summe(Messergebnisse)]=[mu(Unsicherheit) /mu(Messergebnisse] entspricht später dem arythmetischenmittel der relativen Fehler der Einzelmessungen.
Kolja L. schrieb: > Wie aber gehen wir damit um: > Unsicherheiten aufsummieren, arithmetisches oder quadratisches Mittel > bilden? Genau deshalb gibt es Normen. In den Normausschüssen wird man einig wie zu messen und zu mitteln ist. Wenn du den Anwendungsbereich und die Applikation kennst, findest du eine Norm was zu messen ist, diese Norm hat einen normativen Verweis auf die Norm wie zu messen ist. -> gehe in die Bücherei. Da kann man Normen gratis einsehen. > Außerdem hätte dann ja die Unsicherheit noch eine Standardabweichung, > deren Sinn sich mir auch nicht erklärt. -> gehe in die Bücherei. Finde ein Lehrbuch der deskriptiven Statistik.
Ergänzung das Einfache Aufsummieren ist nur dann zulässig wenn die Unsicherheit euer Zeitintervalle verschwindent klein ist sonst muss die Zeit Unsicherheit mit berücksichtigt werden.
MaWin schrieb: > .... ihr wollt wohl nur die > Momentanleistung der 30 Sekunden auf 1h hochrechnen, egal wie hoch der > Heizeffekt in 30 Minaten real wäre und egal wie stark die Heizleistung > in 30 Minuten real wäre (andere Konvektion, andere Wärmedifferenzen). Wir wollen wissen, wie viel Energie in der einen Stunde abgegeben wurde, aber dann gilt ja das: (was ja auch mein Ansatz ist) > Damit passt die einfache mathematische Fortschreibung ohne sich Gedanken > um Auswirkungen des Heizens zu machen. Bademeister schrieb: > Die Streuung wird durch Mitteln zwar kleiner, aber man kann trotzdem > noch systematisch voll daneben liegen. Ja, aber die systematischen Fehler würde ich gerne in dieser Diskussion außen vor lassen. Georg schrieb: > Dabei geht man davon aus, dass der Messwert selbst stabil ist und > zufällige Störungen auftreten - diese kann man ausmitteln. Aber eben nur > bei konstantem Messwert und zufällig verteilten (!) Störungen. Also in > eurem Fall nicht. Das Argument der "Gegenseite" war: Die Ungenauigkeit der Sensoren ist in allen Messbereichen in etwa gleich hoch. Temperatur -> Pt1000 Volumenstrom -> bleibt konstant Wärmekapazität -> Literatur, Temperaturabhängigkeit erst mal unberücksichtigt Damit bleiben doch nur noch zufällig verteilte Störungen, oder nicht? Benedikt S. schrieb: > Unsicherheiten aufsummieren! > Das wars, ihr Summiert ja auch das Ergebniss. Mit dieser Aussage von mir fing die Diskussion an ;-) Sebastian L. schrieb: > -> gehe in die Bücherei. Danke Sebastian für den Beweis, dass Internetforen eigentlich überflüssig sind. Benedikt S. schrieb: > Ergänzung das Einfache > Aufsummieren ist nur dann zulässig wenn die Unsicherheit euer > Zeitintervalle verschwindent klein ist sonst muss die Zeit Unsicherheit > mit berücksichtigt werden. Danke, der Hinweis ist gut!
Kolja L. schrieb: > Gemessen wird die Energiedifferenz eines Volumentroms in einer > bestimmten Zeit. (vor und nach einem Radiator) Das nennt sich dann wohl Leistung > Q = 15 ± 0.2 kWh Angenommen, dies bezeichnet den stochastitschen, normalverteilten Fehler einer Einzelmessung, dann ist zu erwarten, dass der stochastitsche Fehler des Mittelwertes von n Messungen um den Faktor Wurzel(n) kleiner ist. Systematische Fehler, also als stabil einbezogen Fehler z.B. auf Grund der nicht perfekten Kalibrierung, Unsicherheit der Temperatur oder was auch immer, bleiben bei Mittelung natürlich unverändert erhalten.
Kolja L. schrieb: > Wie aber gehen wir damit um: > > Unsicherheiten aufsummieren, arithmetisches oder quadratisches Mittel > bilden? > > Im ersten Fall ist die Unsicherheit dann ja etwa so groß, wie in den > Einzelmessungen, was (mMn) ja auch so sein muss. > > Bei der Mittelwertbildung über einen längeren Zeitraum "verschwindet" > die Unsicherheit ja fast vollständig, was ja nicht real ist. Schau Dir einmal folgendes PDF an, vor allem Abschnitt 7.3.1: https://www.ph.tum.de/academics/org/labs/ap/org/ABW.pdf Nimm die Gesamtenergie als Integral über die Leistungen, vereinfacht als Summe über die gemessenen Momentanleistungen, jeweils multipliziert mit der Zeitspanne. Im Endeffekt dürfte es auf das quadratisches Mittel herauslaufen. Die zufälligen Störungen sollen/sollten sich mit der Vielzahl der Messung herausmitteln.
Wolfgang schrieb: > Das nennt sich dann wohl Leistung > >> Q = 15 ± 0.2 kWh Oder das "h" muss weg... Wolfgang schrieb: > Angenommen, dies bezeichnet den stochastitschen, normalverteilten Fehler > einer Einzelmessung, dann ist zu erwarten, dass der stochastitsche > Fehler des Mittelwertes von n Messungen um den Faktor Wurzel(n) kleiner > ist. Ist denn das Aufsummieren von 120 Messungen (mit ausschließlich normalverteilten Ungenauigkeiten) und damit die Berechnung der umgesetzten Energie in dem Zeitraum der Messungen eine Mittelwertbildung? Das ist ja der 'Casus knacksus'. Wenn ja, ist die Berechnung der Ungenauigkeit real nicht relevant, weil sehr klein. Achim H. schrieb: > Schau Dir einmal folgendes PDF an, vor allem Abschnitt 7.3.1: Danke, das wurde mir eben schon vorgelegt. Es untermauert diese Behauptung: "Wenn ja, ist die Berechnung der Ungenauigkeit real nicht relevant, weil sehr klein."
Die Unsicherheit liegt in den Temperaturen, nicht in der Zeit. Resp die Zeit ist um Groessenordnungen genauer und konstanter, dass die Temperatur bleibt. Und auch da bleibt der Systematische Fehler, nicht das Rauschen auf den Messwerten, ausser du misst und rechnest mit einem 10Bit ADC wie direkt im controller. Aber dann solltest du's sowieso vergessen. Der Systematische Fehler besteht aus der Messung und dem Sensor. Den Sensor bekommst du auf 1.5Grad genau reproduzierbar. Und dann kommt die Messung. Was du misst ist die Sensortemperatur, nicht die Wassertemperatur... die Wassertemperatur ist allenfalls etwas daneben.
Kolja L. schrieb: > Ist denn das Aufsummieren von 120 Messungen (mit ausschließlich > normalverteilten Ungenauigkeiten) und damit die Berechnung der > umgesetzten Energie in dem Zeitraum der Messungen eine > Mittelwertbildung? Nein. > Wenn ja, ist die Berechnung der Ungenauigkeit real nicht relevant, weil > sehr klein. "sehr klein" ist so wie "in sehr seltenen Fällen führt die Einnahme der Medizin zum Tode". Deine Unsicherheit von 0,2kWh, was soll die ausdrücken? Für mich ist die Angabe nicht komplett.
Wolfgang schrieb: > Angenommen, dies bezeichnet den stochastitschen, normalverteilten Fehler > einer Einzelmessung, dann ist zu erwarten, dass der stochastitsche > Fehler des Mittelwertes von n Messungen um den Faktor Wurzel(n) kleiner > ist. Das bezieht sich nur auf die Messung EINES WIEDERKEHRENDEN IMMER GLEICHEN physikalischen Prozesses! Bei der angegebenen Messung eines Volumenstromes wird aber ständig ein ANDERER physikalischer Prozess gemessen! Wenn man also die Ausgangsformel Q = 15 ± 0.2 kWh im Zeitbereich erweitern will, so ändert sich also im Toleranzwert zunächst gar nichts - es sei denn, die Angabe ± 0.2 kWh ist in Wirklichkeit falsch und müsste auf Grund des Messverfahrens z.B. ± 0,1% heißen. Ein prozentualer Fehler kann ohne Veränderung auch in größeren Zeitbereichen problemlos angewandt werden. Bei der Messung eines Volumenstromes entsteht der Fehler aber wahrscheinlich zum einen bei der Messung des Volumens (und das ist in der Regel ein prozentualer Fehler vom Bereichsendwert) und der Messung der zugehörigen Zeiteinheit - wohl ebenso im Wesen ein prozentualer Fehler. Ich würde die angegebenen ± 0.2 kWh hinterfragen und in "%" umwandeln dann kann man das Ganze recht einfach skalieren.
ich muss mich etwas korrigieren, ein prozentualer Fehler bezieht sich immer auf einen maximalen Mess-Bereich: also z.B. die Angabe an einer Waage: ± 1g bedeutet eigentlich, dass im Inneren das vom Sensor gemessene Gewicht bezogen auf den Maximalbereich mit einer Genauigkeit von x% vom Mess-Bereich gemessen wird. Baue ich nun eine neue Waage mit größerem Messbereich aber gleichem Messprinzip, so bleibt x% gleich, aber die Angabe ± 1g vergrößert sich. Wiege ich anderseits nacheinander mehrere Objekte mit der ersten Waage und will das Gesamtgewicht ermitteln, so bleibt die Fehlerangabe ± 1g auch für das Gesamtgewicht bestehen! Bei der einfachen Summierung nimmt man für das Ergebnis den angegebenen Fehler der Summanden. Wenn dieser Fehler aber unterschiedlich groß ist, so hängt es von der Größe des Einflusses der einzelnen Summanden und ihres Fehlers auf das Endergebnis ab welcher Gesamtfehler entsteht. Bei der des Fehlers aus unterschiedlichen (aufeinander folgenden) Prozessschritten in der Messkette (den alle Messwerte gleichermaßen durchlaufen müssen) nimmt man den mittleren quadratischen Fehler der Einzelfehler je Prozessschritt - mit der Zusatzangabe, dass der so ermittelte Gesamtfehler 95% aller Ereignisse abdeckt.
Kolja L. schrieb: > Ist denn das Aufsummieren von 120 Messungen (mit ausschließlich > normalverteilten Ungenauigkeiten) und damit die Berechnung der > umgesetzten Energie in dem Zeitraum der Messungen eine > Mittelwertbildung? > > Das ist ja der 'Casus knacksus'. > > Wenn ja, ist die Berechnung der Ungenauigkeit real nicht relevant, weil > sehr klein. Ja, mE handelt sich um eine Art der Mittelwertbildung -- mit einem kleinen Haken, siehe unten. Gedankenexperiment: Du hast einen Messbecher und einen großen (anfangs leeren) Tank. Du gießt Wasser in den Messbecher und misst die Menge, danach gießt Du den Inhalt in den Tank; diesen Schritt wiederholst Du häufig. Über die Menge im Tank und die Anzahl der Messbecher-Füllungen kannst Du die mittlere Füllmenge des Messbechers bestimmen. - Bei vielen Messungen, von denen keine dominiert[1], kann man in der Tat davon ausgehen, dass sich die zufälligen Messfehler mit der Zeit herausmitteln. Die systematischen Messfehler addieren sich aber. [1] Mit "Dominiert" meine ich, dass eine einzige oder ganz wenige Messungen fast die komplette Summe bestimmt, d.h. das jeder einzelne Messwert Vn gegenüber der Summe verschwindet:
:
Bearbeitet durch User
Uuu B. schrieb: > Wiege ich anderseits nacheinander mehrere Objekte mit > der ersten Waage und will das Gesamtgewicht ermitteln, so bleibt die > Fehlerangabe ± 1g auch für das Gesamtgewicht bestehen! Das ist natürlich Nonsens, aber meinen eigenen Beitrag konnte ich leider nicht mehr korrigieren.. Bei der Addition von Messwerten mit einer Fehlerangabe addiert sich im ungünstigsten Fall natürlich auch der Fehler, im günstigsten Fall löschen sich alle Fehler aus... Siehe auch [https://de.wikipedia.org/wiki/Fehlerfortpflanzung]
Uuu B. schrieb: > Bei der Addition von Messwerten mit einer Fehlerangabe addiert sich im > ungünstigsten Fall natürlich auch der Fehler, im günstigsten Fall > löschen sich alle Fehler aus... Siehe auch Eben, und da die Fehler normalverteilt sein sollen, mitteln sie sich beim Aufsummieren weg, d.h. bei unendlich vielen Messungen wird der Fehler zu 0, bei n Messungen verringert sich der Fehler für den Erwartungswert der Messung um den Faktor 1/sqrt(n-1). Die Chance, dass du in einem luftgefüllten Raum erstickst, weil sich die "Luft"-Moleküle zufällig alle in der anderen Hälfte des Raumes befinden, existiert theoretisch - die Wahrscheinlichkeit ist aber verschwindend gering. Und genauso ist es mit dem zufälligen Aufsummieren statistisch normalverteilter, unkorrelierter Fehler.
Kolja L. schrieb: > Bei der Mittelwertbildung über einen längeren Zeitraum "verschwindet" > die Unsicherheit ja fast vollständig, was ja nicht real ist. Doch das ist real, es bezieht sich aber NUR auf den konstanten, unter gleichen Bedingungen gemessenen physikalischen Prozess, nicht aber auf die MESSBEDINGUNGEN mit ihrem METHODISCHEN FEHLER. Der bleibt am Ende übrig und konstant, solange sich die Bedingungen nicht ändern. Kolja L. schrieb: > Jetzt messen wir aber alle 30 Sekunden und würden gerne die Energie pro > Stunde berechnen, inklusive der Unsicherheit. Das hängt von der Art der Messung ab. Wird z.B. die Druckdifferenz vor und nach dem Radiator gemessen (unter immer gleichen Bedingungen lange Zeit) und dann per Formel auf eine Energiedifferenz hochgerechnet, so ist der Messfehler nach 1h kleiner als nach 30s, davon ausgenommen natürlich der methodische Messfehler, den man gesondert aus den Daten des Druckmessgerätes ermitteln muss. Achim H. schrieb: > Die systematischen Messfehler addieren sich aber. Das stimmt beim Beispiel der Druckdifferenzmessung aber nicht, am Ende bleibt der Gesamtfehler, bestehend aus dem methodischen Messfehler und einem "physikalischem" Restfehler konstant, egal, wie lange gemessen wird.
Wolfgang schrieb: > Die Chance, dass du in einem luftgefüllten Raum erstickst, weil sich die > "Luft"-Moleküle zufällig alle in der anderen Hälfte des Raumes befinden, > existiert theoretisch - die Wahrscheinlichkeit ist aber verschwindend > gering. Genau, wir werden eher von der Statistik erschlagen ;-)
Wolfgang schrieb: > Eben, und da die Fehler normalverteilt sein sollen, mitteln sie sich > beim Aufsummieren weg, d.h. bei unendlich vielen Messungen wird der > Fehler zu 0, bei n Messungen verringert sich der Fehler für den > Erwartungswert der Messung um den Faktor 1/sqrt(n-1). Aber, die Unsicherheit der Messapparatur an sich, bleibt dabei als quasi Konstante bestehen. Egal wie oft du einen Messwert erhebst, unter die Unsicherheit deiner Messapparatur kommst du nie!
Etwas Formalisierung hilft in der Regel. Es werde alle Δt Zeiteinheiten die Leistung gemessen. Der n-te Messwert lässt sich dann schreiben als
welcher zum Zeitpunkt nΔt gemessen wird. Dabei ist P_n der wahre Wert der Messung, und X_n die zufällige Messabweichung (systematische Abweichungen bleiben außen vor). Man kann annehmen, dass die X_n unabhängige und identisch verteilte Zufallsvariablen sind, sofern sich die Messungen nicht irgendwie gegenseitig beeinflussen und sich die Apparatur zwischen den Messungen nicht verändert. Für die gemessene Gesamtenergie nach N Einzelmessungen der Leistung gilt dann
Nimmt man an, dass die X_n normalverteilt sind mit Erwartungswert Null (d.h. die Messabweichungen streuen um Null -- kein systematischer Fehler) und Varianz sigma^2, in Formeln
so folgt aufgrund der Eigenschaften der Normalverteilung, dass die Summe der X_n ebenfalls normalverteilt ist mit Erwarungswert 0 und Varianz N sigma^2, d.h.
Das beweist man z.B. mithilfe der charakteristischen Funktion der Summe, bzw. der Faltung der Dichtefunktionen. Es ist also
und für die Wahrscheinlichkeit, dass die Abweichung von Q_mess kleiner als eine vorgegebene Schranke epsilon ist, folgt
mit f_{0,N sigma^2} der Dichtefunktion und \Phi_{0,N sigma^2} der Verteilungsfunktion der Normalverteilung mit Erwartung Null und Mittelwert N sigma^2. Im einfachsten Fall nimmt man eine Standardabweichung (d.h. Quadratwurzel der Varianz) von Q_ges als Maß für die Messunsicherheit, was der Wahl von epsilon = 0.682 entspricht (und entsprechend sigma als Maß der Messunsicherheit von P_mess,n). Die Standardabweichung von Q_ges ist gegeben durch
D.h. bei der Wahl epsilon = 0.682 ist die Messunsicherheit von Q_ges um einen Faktor
größer als die Messunsicherheit der Messgrößen P_mess,n. Das alles geht natürlich davon aus, dass Δt mit keiner Unsicherheit behaftet ist. Lässt sich aber verallgemeinern. Ebenso lassen sich leicht systematische Abweichungen einbauen. Edit: Tippfehler in Formel.
Uuu B. schrieb: > dass der so ermittelte > Gesamtfehler 95% aller Ereignisse abdeckt. Diese Information liefert Kolja leider nicht. Für die numerische (ex-Post)-Berechnung der Standardabweichung ist es aber entscheidend, worum es sich bei den 0.2 kWh handelt. Kolja L. schrieb: > Q = 15 ± 0.2 kWh Des Weiteren fehlt auch eine Angabe, wie hoch die Unsicherheit des Messwertes ist. Das könnte beispielsweise 1% des Messwertes + 0,1W sein. Zum Schluss muss noch entschieden werden, welches Konfidenzniveau dem Kunden gezeigt werden soll.
:
Bearbeitet durch User
Streber.. ;-) am besten gefällt mir: Mario H. schrieb: > Faltung der Dichtefunktionen Scheint aber alles korrekt zu sein ;-) Obwohl die Wahl von Epsilon und damit Sigma natürlich von der Messdauer im Beispiel der Radiatormessung abhängt und somit individuell angepasst werden könnte. Der (noch unbekannte) methodische Messfehler durch die Messeinrichtung bleibt unabhängig davon natürlich bestehen. Hoffentlich kann Kolja was damit anfangen!
Beitrag #6012611 wurde von einem Moderator gelöscht.
Mario H. schrieb: > [...] was der Wahl von epsilon = 0.682 entspricht [...] und > D.h. bei der Wahl epsilon = 0.682 [...] Kleine Korrektur: Die 0,682 sind nicht das epsilon, sondern das Konfidenzniveau, d.h. die Wahrscheinlichkeit, mit der Q_mess im Intervall
liegt. D.h. man bekommt
wenn man das Konfidenzniveau 0,682 wählt. Uuu B. schrieb: > Streber.. ;-) Das lässt mich kalt. :-)
Mario H. schrieb: > wenn man das Konfidenzniveau 0,682 wählt. Jetzt verstehe ich gar nichts mehr ;-( Ist das Epsilon als Intervall im Integral nun nicht das Konfidenzintervall sondern das Konfidenzniveau?? Wie kommst Du eigentlich auf 0,682? Die üblichen Werte für das Konfidenzniveau sind doch eher 0,95; 0,99 oder 0,999, oder nicht? Das ist doch die Wahrscheinlichkeit mit der die Messungen im Konfidenzintervall liegen! Heißt das gemäß
, dass die Messunsicherheit mit steigender Zahl der Messungen wächst? Konfused..
Uuu B. schrieb: > Jetzt verstehe ich gar nichts mehr ;-( Angenommen, wir schreiben eine Messgröße G_mess als
mit G_0 dem wahren Wert und der Zufallsvariablen X, die die zufälligen Abweichungen beschreibt, und die Erwartungswert Null hat, wenn keine systematischen Abweichungen vorliegen. Wenn nun gilt
dann liegt die Messabweichung von G_mess mit Wahrscheinlichkeit alpha im Intervall
In diesem Sinne ist alpha das Konfidenzniveau, das zum Unsicherheitsinervall [-\epsilon,+\epsilon] gehört. Soviel zur Terminologie "Konfindezniveau" und "Messabweichung/Unsicherheitsintervall". Ist X zusätzlich normalverteilt mit Erwartung Null und Varianz sigma^2, also
dann folgt aus alpha = 0,682, dass epsilon = sigma, oder umgekehrt. Mit anderen Worten: Ist das Unsicherheitsintervall gerade eine Standardabweichung groß, entspricht das einem Konfidenzniveau von 0,682 bei der Normalverteilung. Ist das Unsicherheitsintervall z.B. [-2 sigma, 2 sigma], also doppelt so groß, ist das Konfidenzniveau schon 0,955. Das bekommt man aus tabellierten Daten für die Verteilungsfunktion der Normalverteilung; die ist leider nicht als geschlossener Ausdruck darstellbar. Für das in Beitrag "Re: Grundlegendes zur Messungenauigkeiten" gesagte folgt auch: Für ein Konfidenzniveau von 0,955 ist das Unsicherheitsintervall von Q_mess
wie man leicht nachrechnen kann. > Heißt das gemäß [...] dass die Messunsicherheit mit > steigender Zahl der Messungen wächst? Ja. Wenn man N unabhängige identisch normalverteile Zufallsvariablen X_n mit Varianz sigma^2 addiert, ist die Summe
normalverteilt mit Varianz N sigma^2. Die Standardabweichung von S wächst also um den Faktor sqr(N) gegenüber der von X_n. Haben die Zufallsvariablen Erwartungswert Null, gilt das allerdings auch für die Summe; die Variable S streut also immer noch um Null herum, nur eben breiter. Etwas anderes gilt übrigens für den Mittelwert
der Zufallsvariablen X_n. Dieser hat Varianz
die Standardabweichung des Mittelwertes ist also
was gegen Null geht für N gegen unendlich. In diesem Fall gilt, dass sich die Streuung "herausmittelt", was ja ein bekanntes Phänomen ist.
Danke Mario für die ausführliche Erklärung. Ich hatte einen Denkfehler.. Wenn man Energiedifferenz eines Volumentroms nicht nur in 30s, sondern über eine Stunde misst ändert sich auch delta t (während N konstant bleibt) bzw. bei der Addition von 30s Einzelmessungen wird tatsächlich der absolute Fehler mit der Summe größer, das hatte ich durcheinandergebracht. Fehlt nur noch die Rückmeldung von Kolja..
Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail? Keine Anmeldung erforderlich!
Mit Google-Account einloggen
Mit Google-Account einloggen
Noch kein Account? Hier anmelden.